RSS-Feed abonnieren
DOI: 10.1055/s-0030-1260566
Tetrakis(trimethylsilyl) Ethenylidene-1,1-bisphosphonate: A Mild and Convenient Michael Acceptor for the Synthesis of 2-Aminoethylidene-1,1-bisphosphonic Acids and Their Potassium Salts
Publikationsverlauf
Publikationsdatum:
16. Mai 2011 (online)

Abstract
A straightforward synthesis of highly functionalized 2-aminoethylidene-1,1-bisphosphonic acids via the Michael addition of amines to easily available tetrakis(trimethylsilyl) ethenylidene-1,1-bisphosphonate, H2C=C[P(O)(OTMS)2]2, has been described. The potassium salts of the title compounds were also easily achieved in high yield by reacting the Michael adducts with potassium fluoride.
Key words
ethenylidene-1,1-bisphosphonates - 2-aminoethylidene-1,1-bisphosphonic acids - Michael addition - amines - silicon
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Zhang S.Gangal G.Uludag H. Chem. Soc. Rev. 2007, 36: 507Reference Ris Wihthout Link - 1b
Russell R.Rogers M. Bone 1999, 25: 97Reference Ris Wihthout Link - 1c
Breuer E. In Analogue-Based Drug DiscoveryFischer J.Ganellin R. Wiley-VCH; Weinheim: 2006. p.371-384Reference Ris Wihthout Link - 1d
Berlicki Ł.Kafarski P. Curr. Org. Chem. 2005, 9: 1829Reference Ris Wihthout Link - 1e
Reszka AA.Rodan A. Mini-Rev. Med. Chem. 2004, 4: 711Reference Ris Wihthout Link - 2a
Drake MT.Clarke BL.Khosla S. Mayo Clin. Proc. 2008, 83: 1032Reference Ris Wihthout Link - 2b
Rodan GA.Reszka AA. Curr. Mol. Med. 2002, 2: 571Reference Ris Wihthout Link - 2c
Roelofs AJ.Thompson K.Gordon S.Rogers MJ. Clin. Cancer Res. 2006, 12: 6222sReference Ris Wihthout Link - 2d
Catterall JB.Cawston TE. Arthritis Res. Ther. 2002, 5: 12Reference Ris Wihthout Link - 2e
Wilder L.Jaeggi KA.Green JR. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 144-146: 5Reference Ris Wihthout Link - 2f
Clézardin P.Ebetino FH.Fournier PGJ. Cancer Res. 2005, 65: 4971Reference Ris Wihthout Link - 3a
Simoni D.Gebbia N.Invidiata FP.Eleopra M.Marchetti P.Rondanin R.Baruchello R.Provera S.Marchioro C.Tolomeo M.Marinelli L.Limongelli V.Novellino E.Kwaasi A.Dunford J.Buccheri S.Caccamo N.Dieli F. J. Med. Chem. 2008, 51: 6800Reference Ris Wihthout Link - 3b
Wang L.Kamath A.Das H.Li L.Bukowski J. J. Clin. Invest. 2001, 108: 1349Reference Ris Wihthout Link - 3c
Sanders JM.Ghost S.Chan JMW.Meints GA.Wang H.Raker AM.Song Y.Colantino A.Burzynska A.Kafarski P.Morita CT.Oldfield E. J. Med. Chem. 2004, 47: 375Reference Ris Wihthout Link - 4a
Szajnman SH.Liñares GEG.Li Z.-H.Jiang C.Galizzi M.Bontempi EJ.Ferella M.Moreno SNJ.Docampo R.Rodriguez JB. Bioorg. Med. Chem. 2008, 16: 3283Reference Ris Wihthout Link - 4b
Martin MB.Grimley JS.Lewis JC.Heath HT.Bailey BN.Kendrick H.Yardley V.Caldera A.Lira R.Urbina JA.Moreno SNJ.Docampo R.Croft SL.Oldfield E. J. Med. Chem. 2001, 44: 909Reference Ris Wihthout Link - 4c
Martin MB.Sanders JM.Kendrick H.de Luca-Fradley K.Lewis JC.Grimley JS.Van Brussel EM.Olsen JR.Meints GA.Burzynska A.Kafarski P.Croft SL.Oldfield E. J. Med. Chem. 2002, 45: 2904Reference Ris Wihthout Link - 5a
Abdou WM.Shaddy AA. ARKIVOC 2009, (ix): 143Reference Ris Wihthout Link - 5b
Wilder L.Jaeggi KA.Glatt M.Müller K.Bachmann R.Bisping M.Born A.-R.Cortesi R.Guiglia G.Jeker H.Klein R.Ramseier U.Schmid J.Schreiber G.Seltenmeyer Y.Green JR. J. Med. Chem. 2002, 45: 3721Reference Ris Wihthout Link - 5c
Kukhar VP.Romanenko VD. In Amino Acids, Peptides and Proteins in Organic Chemistry Vol. 2:Hughes AB. Wiley-VCH; Weinheim: 2009. p.189-260Reference Ris Wihthout Link - 5d
Zolotukhina MM.Krutikov VI.Lavrent’ev AN. Russ. Chem. Rev. (Engl. Transl.) 1993, 62: 647Reference Ris Wihthout Link - 6a
Janecki T.Kūdzia J.Wąsek T. Synthesis 2009, 1227Reference Ris Wihthout Link - 6b
Enders D.Saint-Dizier A.Lannou M.-I.Lenzen A. Eur. J. Org. Chem. 2006, 29Reference Ris Wihthout Link - 7
Vepsäläinen JJ. Curr. Med. Chem. 2002, 9: 1201 - For example, see:
- 8a
Takeuchi M.Sakamoto S.Yoshida M.Abe T.Isomura Y. Chem. Pharm. Bull. 1993, 41: 688Reference Ris Wihthout Link - 8b
Olive G.Jacques A. Phosphorus, Sulfur Silicon Relat. Elem. 2003, 178: 33Reference Ris Wihthout Link - 8c
Szajnman SH.Montalvetti A.Wang Y.Docampo R.Rodriguez JB. Bioorg. Med. Chem. Lett. 2003, 13: 3231Reference Ris Wihthout Link - For example:
- 9a
Mimura M.Hayashida M.Nomiyama K.Ikegami S.Iida Y.Tamura M.Hiyama Y.Ohishi Y. Chem. Pharm. Bull. 1993, 41: 1971Reference Ris Wihthout Link - 9b
Morioka M.Kamizono A.Takikawa H.Mori A.Ueno H.Kadowaki S.Nakao Y.Kato K.Umezawa K. Bioorg. Med. Chem. 2010, 18: 1143Reference Ris Wihthout Link - 9c
Page PCB.Moore JPG.Mansfield I.McKenzie MJ.Bowler WB.Gallagher JA. Tetrahedron 2001, 57: 1837Reference Ris Wihthout Link - 10
Page PCB.McKenzie MJ.Gallagher JA. Synth. Commun. 2002, 32: 211 - 11
Page PCB.McKenzie MJ.Gallagher JA. J. Org. Chem. 2001, 66: 3704 - 12
Duncan GD.Li Z.-M.Khare AB.McKenna CE. J. Org. Chem. 1995, 60: 7080 - 13
Shevchuk MV.Romanenko VD.Kukhar VP. Book of Abstracts 18th International Conference on Phosphorus Chemistry, Wroclaw, Poland, July 11-15th, 2010 ICPC; Wroclaw: 2010. p.131 - 14
Degenhardt CR.Burdsall DC. J. Org. Chem. 1986, 51: 3488 - 19
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox EJ.Hratchian HP.Cross JB.Bakken V.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03, Revision d-02 Gaussian Inc.; Pittsburgh: 2003. - 20
Parr RG.Yang W. Functional Theory of Atoms and MoleculesBreslow R.Goodenough JB. Oxford University Press; New York: 1989. - 21a
Becke AD. Phys. Rev. A 1988, 38: 3098Reference Ris Wihthout Link - 21b
Becke AD. J. Chem. Phys. 1993, 98: 5648Reference Ris Wihthout Link - 21c
Lee C.Yang W.Parr RG. Phys. Rev. B 1988, 37: 785Reference Ris Wihthout Link - 22a
Flükiger P.Lüthi HP.Portmann S.Weber J. MOLEKEL 4.3 Swiss Center for Scientific Computing; Manno (Switzerland): 2000-2002.Reference Ris Wihthout Link - 22b
Portmann S.Lüthi HP. Chimia 2000, 54: 766Reference Ris Wihthout Link
References and Notes
Tetrakis(trimethylsilyl) ethenylidenebisphosphonate (2) A hot-gun dried Schlenk-type flask stopped with rubber septum and flashed with argon was charged with tetraethyl ester 1 (5.79 g, 0.0193 mol) and dry MeCN (10 mL). Bromotrimethylsilane (12.8 g, 0.0833 mol) was added to this solution via a syringe. After a mild exothermic period the reaction mixture was allowed to stir overnight at 20 ˚C. Volatiles were removed under vacuum, and the product was distilled at 125-130 ˚C under 0.05 mm as clear viscous oil (8.27 g, 90%) which formed air-sensitive needle-like crystals when cooled below 20 ˚C. ¹H NMR (400 MHz, C6D6): δ = 0.29 (s, 36 H, SiCH3), 6.68 (dd, ³ J HP = 35.1 Hz, ³ J HP = 38.8 Hz, 2 H, CH2=CP2) ppm. ¹³C{¹H} NMR (100 MHz, C6D6): δ = 1.5 (s, SiCH3), 140.3 (t, ¹ J CP = 173.4 Hz, CH2=CP2), 143.1 (s, CH2=CP2) ppm. ³¹P{¹H} NMR (162 MHz, C6D6): δ = -3.1 (dd, ³ J PH = 35.1 Hz, ³ J PH = 38.8 Hz) ppm. NMR spectral data were consistent with those described previously.¹²
16Calculations were performed with the Gaussian 03 programs,¹9 using the density functional method.²0 The hybrid exchange functional B3LYP in conjunction with the 6-31+G** basis set was used. B3LYP²¹ is a three-parameter functional developed by Becke which combines the Becke gradient-corrected exchange functional and the Lee-Yang-Parr and Vosko-Wilk-Nusair correlation functionals with part of exact HF exchange energy. The optimized structures were confirmed as true minima on the potential energy through vibrational analysis. The frequencies were calculated with analytical second derivatives. All total energies have been zero-point energy (ZPE) and temperature corrected using unscaled density functional frequencies. Molecular orbitals have been plotted with the Molekel package.²²
17
2-[4-(Ethoxycarbonyl)piperazin-1-yl]ethylidene-1,1-bisphosphonic
acid (3n)
Solution of tetrasilyl ester 2 (890
mg, 1.87 mmol) and 1-carbethoxypiperazine (346 mg, 1.87 mmol) in
CH2Cl2 was stirred at r.t. overnight. Solvent
was evaporated, and the resulting oil was treated with methanol
to precipitate 3n (440 mg, 68%).
Colorless crystals; mp 223 ˚C. ¹H
NMR (400 MHz, D2O): δ = 1.20
(t, ³
J
HH = 7.3
Hz, 3H, CO2CH2CH
3), 2.71
(tt, ²
J
HP = 21.5
Hz, ³
J
HH = 8.2
Hz, 1 H, NCH2CHP2), 3.05-3.10
(m, 2 H, CH2), 3.16-3.26 (m, 2 H, CH2),
3.51 (td, ³
J
HP = 14.2
Hz, ³
J
HH = 8.2
Hz, 2 H, NCH
2CHP2),
3.60-3.68 (m, 2 H, CH2), 4.10 (q, ³
J
HH = 7.3
Hz, CO2CH
2CH3),
4.20-4.30 (m, 2 H, CH2) ppm. ¹³C{¹H} NMR
(100 MHz, D2O): δ = 13.7,
33.9 (t, ¹
J
CP = 120.3
Hz, NCH2
CHP2),
41.1, 51.4, 54.3, 63.2, 156.4 (CO2Et) ppm. ³¹P{¹H} NMR
(162 MHz, D2O): δ = 15.5
ppm. Anal. Calcd for C9H20N2O8P2 (346.07): N,
8.09. Found: N, 8.40.
2-[4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzeneamino]ethylidenebisphosphonic
Acid Tetrapotassium Salt (4a)
Solution of tetrasilyl
ester 2 (340 mg, 0.71 mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzeneamine
(171
mg, 0.78 mmol) in MeCN (8 mL) was stirred at 60 ˚C for
90 h and then cooled to ambient temperature. KF (174 mg, 2.99 mmol)
and dibenzo-18-crown-6 (32 mg, 0.09 mmol) were added, and the mixture
was stirred at 50 ˚C for another 24 h. Product
was isolated via centrifugation as colourless hygroscopic air-sensitive
solid in 80% yield (350 mg); mp >250 ˚C. ¹H
NMR (500 MHz, D2O): δ = 1.22
(s, 12 H, CCH3), 2.27 (m, 1 H, NCH2CHP2), 3.58 (m, 2 H, NCH
2CHP2), 6.87 (d, ³
J
HH = 7.8
Hz, 0.5 H, H
Ar), 6.92 (t, ³
J
HH = 7.8
Hz, 1.5 H, H
Ar), 7.32 (t, ³
J
HH = 7.8
Hz, 1.5 H, H
Ar), 7.65 (d, ³
J
HH = 7.8
Hz, 0.5 H, H
Ar) ppm. ¹³C{¹H} NMR (100
MHz, D2O): δ = 23.8,
42.1, 75.7, 111.5, 119.6, 129.6 ppm. ³¹P{¹H} NMR
(202.5 MHz, D2O): δ = 17.0-19.0(br) ppm.
Anal. Calcd for C10H17NO7P2 (325.05):
P, 11.07. Found: P, 10.89.