Synlett 2011(10): 1370-1374  
DOI: 10.1055/s-0030-1260566
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Tetrakis(trimethylsilyl) Ethenylidene-1,1-bisphosphonate: A Mild and Convenient Michael Acceptor for the Synthesis of 2-Aminoethylidene-1,1-bisphosphonic Acids and Their Potassium Salts

Michael V. Shevchuka, Jean-Marc Sotiropoulosb, Karinne Miqueub, Vadim D. Romanenkoa, Valery P. Kukhar*a
a Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska 1, Kyiv-94, 02660, Ukraine
Fax: +38(044)5732552; e-Mail: kukhar@bpci.kiev.ua;
b Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, UMR-CNRS 5254, Université de Pau et des Pays de l"Adour, Hélioparc 2 Avenue du Président Angot, 64053 Pau cedex 09, France
Further Information

Publication History

Received 15 February 2011
Publication Date:
16 May 2011 (online)

Abstract

A straightforward synthesis of highly functionalized 2-aminoethylidene-1,1-bisphosphonic acids via the Michael addition of amines to easily available tetrakis(trimethylsilyl) ethenylidene-1,1-bisphosphonate, H2C=C[P(O)(OTMS)2]2, has been described. The potassium salts of the title compounds were also easily achieved in high yield by reacting the Michael adducts with potassium fluoride.

    References and Notes

  • 1a Zhang S. Gangal G. Uludag H. Chem. Soc. Rev.  2007,  36:  507 
  • 1b Russell R. Rogers M. Bone  1999,  25:  97 
  • 1c Breuer E. In Analogue-Based Drug Discovery   Fischer J. Ganellin R. Wiley-VCH; Weinheim: 2006.  p.371-384  
  • 1d Berlicki Ł. Kafarski P. Curr. Org. Chem.  2005,  9:  1829 
  • 1e Reszka AA. Rodan A. Mini-Rev. Med. Chem.  2004,  4:  711 
  • 2a Drake MT. Clarke BL. Khosla S. Mayo Clin. Proc.  2008,  83:  1032 
  • 2b Rodan GA. Reszka AA. Curr. Mol. Med.  2002,  2:  571 
  • 2c Roelofs AJ. Thompson K. Gordon S. Rogers MJ. Clin. Cancer Res.  2006,  12:  6222s 
  • 2d Catterall JB. Cawston TE. Arthritis Res. Ther.  2002,  5:  12 
  • 2e Wilder L. Jaeggi KA. Green JR. Phosphorus, Sulfur Silicon Relat. Elem.  1999,  144-146:  5 
  • 2f Clézardin P. Ebetino FH. Fournier PGJ. Cancer Res.  2005,  65:  4971 
  • 3a Simoni D. Gebbia N. Invidiata FP. Eleopra M. Marchetti P. Rondanin R. Baruchello R. Provera S. Marchioro C. Tolomeo M. Marinelli L. Limongelli V. Novellino E. Kwaasi A. Dunford J. Buccheri S. Caccamo N. Dieli F. J. Med. Chem.  2008,  51:  6800 
  • 3b Wang L. Kamath A. Das H. Li L. Bukowski J. J. Clin. Invest.  2001,  108:  1349 
  • 3c Sanders JM. Ghost S. Chan JMW. Meints GA. Wang H. Raker AM. Song Y. Colantino A. Burzynska A. Kafarski P. Morita CT. Oldfield E. J. Med. Chem.  2004,  47:  375 
  • 4a Szajnman SH. Liñares GEG. Li Z.-H. Jiang C. Galizzi M. Bontempi EJ. Ferella M. Moreno SNJ. Docampo R. Rodriguez JB. Bioorg. Med. Chem.  2008,  16:  3283 
  • 4b Martin MB. Grimley JS. Lewis JC. Heath HT. Bailey BN. Kendrick H. Yardley V. Caldera A. Lira R. Urbina JA. Moreno SNJ. Docampo R. Croft SL. Oldfield E. J. Med. Chem.  2001,  44:  909 
  • 4c Martin MB. Sanders JM. Kendrick H. de Luca-Fradley K. Lewis JC. Grimley JS. Van Brussel EM. Olsen JR. Meints GA. Burzynska A. Kafarski P. Croft SL. Oldfield E. J. Med. Chem.  2002,  45:  2904 
  • 5a Abdou WM. Shaddy AA. ARKIVOC  2009,  (ix):  143 
  • 5b Wilder L. Jaeggi KA. Glatt M. Müller K. Bachmann R. Bisping M. Born A.-R. Cortesi R. Guiglia G. Jeker H. Klein R. Ramseier U. Schmid J. Schreiber G. Seltenmeyer Y. Green JR. J. Med. Chem.  2002,  45:  3721 
  • 5c Kukhar VP. Romanenko VD. In Amino Acids, Peptides and Proteins in Organic Chemistry   Vol. 2:  Hughes AB. Wiley-VCH; Weinheim: 2009.  p.189-260  
  • 5d Zolotukhina MM. Krutikov VI. Lavrent’ev AN. Russ. Chem. Rev. (Engl. Transl.)  1993,  62:  647 
  • 6a Janecki T. Kūdzia J. Wąsek T. Synthesis  2009,  1227 
  • 6b Enders D. Saint-Dizier A. Lannou M.-I. Lenzen A. Eur. J. Org. Chem.  2006,  29 
  • 7 Vepsäläinen JJ. Curr. Med. Chem.  2002,  9:  1201 
  • For example, see:
  • 8a Takeuchi M. Sakamoto S. Yoshida M. Abe T. Isomura Y. Chem. Pharm. Bull.  1993,  41:  688 
  • 8b Olive G. Jacques A. Phosphorus, Sulfur Silicon Relat. Elem.  2003,  178:  33 
  • 8c Szajnman SH. Montalvetti A. Wang Y. Docampo R. Rodriguez JB. Bioorg. Med. Chem. Lett.  2003,  13:  3231 
  • For example:
  • 9a Mimura M. Hayashida M. Nomiyama K. Ikegami S. Iida Y. Tamura M. Hiyama Y. Ohishi Y. Chem. Pharm. Bull.  1993,  41:  1971 
  • 9b Morioka M. Kamizono A. Takikawa H. Mori A. Ueno H. Kadowaki S. Nakao Y. Kato K. Umezawa K. Bioorg. Med. Chem.  2010,  18:  1143 
  • 9c Page PCB. Moore JPG. Mansfield I. McKenzie MJ. Bowler WB. Gallagher JA. Tetrahedron  2001,  57:  1837 
  • 10 Page PCB. McKenzie MJ. Gallagher JA. Synth. Commun.  2002,  32:  211 
  • 11 Page PCB. McKenzie MJ. Gallagher JA. J. Org. Chem.  2001,  66:  3704 
  • 12 Duncan GD. Li Z.-M. Khare AB. McKenna CE. J. Org. Chem.  1995,  60:  7080 
  • 13 Shevchuk MV. Romanenko VD. Kukhar VP. Book of Abstracts 18th International Conference on Phosphorus Chemistry, Wroclaw, Poland, July 11-15th, 2010   ICPC; Wroclaw: 2010.  p.131 
  • 14 Degenhardt CR. Burdsall DC. J. Org. Chem.  1986,  51:  3488 
  • 19 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox EJ. Hratchian HP. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision d-02   Gaussian Inc.; Pittsburgh: 2003. 
  • 20 Parr RG. Yang W. Functional Theory of Atoms and Molecules   Breslow R. Goodenough JB. Oxford University Press; New York: 1989. 
  • 21a Becke AD. Phys. Rev. A  1988,  38:  3098 
  • 21b Becke AD. J. Chem. Phys.  1993,  98:  5648 
  • 21c Lee C. Yang W. Parr RG. Phys. Rev. B  1988,  37:  785 
  • 22a Flükiger P. Lüthi HP. Portmann S. Weber J. MOLEKEL 4.3   Swiss Center for Scientific Computing; Manno (Switzerland): 2000-2002. 
  • 22b Portmann S. Lüthi HP. Chimia  2000,  54:  766 
15

Tetrakis(trimethylsilyl) ethenylidenebisphosphonate (2) A hot-gun dried Schlenk-type flask stopped with rubber septum and flashed with argon was charged with tetraethyl ester 1 (5.79 g, 0.0193 mol) and dry MeCN (10 mL). Bromotrimethylsilane (12.8 g, 0.0833 mol) was added to this solution via a syringe. After a mild exothermic period the reaction mixture was allowed to stir overnight at 20 ˚C. Volatiles were removed under vacuum, and the product was distilled at 125-130 ˚C under 0.05 mm as clear viscous oil (8.27 g, 90%) which formed air-sensitive needle-like crystals when cooled below 20 ˚C. ¹H NMR (400 MHz, C6D6): δ = 0.29 (s, 36 H, SiCH3), 6.68 (dd, ³ J HP = 35.1 Hz, ³ J HP = 38.8 Hz, 2 H, CH2=CP2) ppm. ¹³C{¹H} NMR (100 MHz, C6D6): δ = 1.5 (s, SiCH3), 140.3 (t, ¹ J CP = 173.4 Hz, CH2=CP2), 143.1 (s, CH2=CP2) ppm. ³¹P{¹H} NMR (162 MHz, C6D6): δ = -3.1 (dd, ³ J PH = 35.1 Hz, ³ J PH = 38.8 Hz) ppm. NMR spectral data were consistent with those described previously.¹²

16

Calculations were performed with the Gaussian 03 programs,¹9 using the density functional method.²0 The hybrid exchange functional B3LYP in conjunction with the 6-31+G** basis set was used. B3LYP²¹ is a three-parameter functional developed by Becke which combines the Becke gradient-corrected exchange functional and the Lee-Yang-Parr and Vosko-Wilk-Nusair correlation functionals with part of exact HF exchange energy. The optimized structures were confirmed as true minima on the potential energy through vibrational analysis. The frequencies were calculated with analytical second derivatives. All total energies have been zero-point energy (ZPE) and temperature corrected using unscaled density functional frequencies. Molecular orbitals have been plotted with the Molekel package.²²

17

2-[4-(Ethoxycarbonyl)piperazin-1-yl]ethylidene-1,1-bisphosphonic acid (3n)
Solution of tetrasilyl ester 2 (890 mg, 1.87 mmol) and 1-carbethoxypiperazine (346 mg, 1.87 mmol) in CH2Cl2 was stirred at r.t. overnight. Solvent was evaporated, and the resulting oil was treated with methanol to precipitate 3n (440 mg, 68%). Colorless crystals; mp 223 ˚C. ¹H NMR (400 MHz, D2O): δ = 1.20 (t, ³ J HH = 7.3 Hz, 3H, CO2CH2CH 3), 2.71 (tt, ² J HP = 21.5 Hz, ³ J HH = 8.2 Hz, 1 H, NCH2CHP2), 3.05-3.10 (m, 2 H, CH2), 3.16-3.26 (m, 2 H, CH2), 3.51 (td, ³ J HP = 14.2 Hz, ³ J HH = 8.2 Hz, 2 H, NCH 2CHP2), 3.60-3.68 (m, 2 H, CH2), 4.10 (q, ³ J HH = 7.3 Hz, CO2CH 2CH3), 4.20-4.30 (m, 2 H, CH2) ppm. ¹³C{¹H} NMR (100 MHz, D2O): δ = 13.7, 33.9 (t, ¹ J CP = 120.3 Hz, NCH2 CHP2), 41.1, 51.4, 54.3, 63.2, 156.4 (CO2Et) ppm. ³¹P{¹H} NMR (162 MHz, D2O): δ = 15.5 ppm. Anal. Calcd for C9H20N2O8P2 (346.07): N, 8.09. Found: N, 8.40.

18

2-[4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzeneamino]ethylidenebisphosphonic Acid Tetrapotassium Salt (4a)
Solution of tetrasilyl ester 2 (340 mg, 0.71 mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzeneamine (171 mg, 0.78 mmol) in MeCN (8 mL) was stirred at 60 ˚C for 90 h and then cooled to ambient temperature. KF (174 mg, 2.99 mmol) and dibenzo-18-crown-6 (32 mg, 0.09 mmol) were added, and the mixture was stirred at 50 ˚C for another 24 h. Product was isolated via centrifugation as colourless hygroscopic air-sensitive solid in 80% yield (350 mg); mp >250 ˚C. ¹H NMR (500 MHz, D2O): δ = 1.22 (s, 12 H, CCH3), 2.27 (m, 1 H, NCH2CHP2), 3.58 (m, 2 H, NCH 2CHP2), 6.87 (d, ³ J HH = 7.8 Hz, 0.5 H, H Ar), 6.92 (t, ³ J HH = 7.8 Hz, 1.5 H, H Ar), 7.32 (t, ³ J HH = 7.8 Hz, 1.5 H, H Ar), 7.65 (d, ³ J HH = 7.8 Hz, 0.5 H, H Ar) ppm. ¹³C{¹H} NMR (100 MHz, D2O): δ = 23.8, 42.1, 75.7, 111.5, 119.6, 129.6 ppm. ³¹P{¹H} NMR (202.5 MHz, D2O): δ = 17.0-19.0(br) ppm. Anal. Calcd for C10H17NO7P2 (325.05): P, 11.07. Found: P, 10.89.