Subscribe to RSS
DOI: 10.1055/s-0030-1260784
Synthetic Approaches to the Bottom Half Fragment for Bryostatin 11
Publication History
Publication Date:
10 June 2011 (online)

Abstract
An approach towards the stereoselective synthesis of the bottom half fragment of bryostatin 11 is described. Key steps include asymmetric aldol and Saksena-Evans reduction reactions to construct multiple stereogenic centers and thioketalization-lactonization reactions to form the thioketal-protected C-ring.
Key words
bryostatin 11 - bottom half fragment - asymmetric aldol - Saksena-Evans reduction - thioketalization-lactonization
- For recent reviews on bryostatin chemistry and biology, see:
-
2a
Mutter R.Wills M. Bioorg. Med. Chem. 2000, 8: 1841 -
2b
Hale KJ.Hummersone MG.Manaviazar S.Frigerio M. Nat. Prod. Rep. 2002, 413 -
2c
Sun MK.Alkon DL. CNS Drug Rev. 2006, 12: 1 -
2d
Abadi G.Palen W.Geddings J.Irwin T.Kasali N.Colyer J.Goodson F.Sith J.Jone K.Hester J.Noble L.Groundwater PW.Phillips D.Manning TJ. Natural Products I, In Recent Progress in Medical Plants Vol. 15:Govil JN.Singh VK.Ahmad K.Sharma RK. Studium Press; New Delhi: 2006. p.363 -
2e
Hale KJ.Manaviazar S. Chem. Asian J. 2010, 5: 704 -
2f
Green AP.Hardy S.Lee ATL.Thomas EJ. Phytochem. Rev. 2010, 9: 501 -
2g
Szpilman AM.Carreira EM. Angew. Chem. Int. Ed. 2010, 49: 9592 -
4a
Etcheberrigaray R.Tan M.Dewachter I.Kuip_eri C.Van der Auwera I.Wera S.Qiao L.Bank B.Nelson TJ.Kozikowski AP.Van Leuven F.Alkon DL. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 11141 -
4b
Alkon DL.Sun M.-K.Nelson TJ. Trends Pharmacol. Sci. 2007, 28: 51 -
5a
Pettit GR. J. Nat. Prod. 1996, 59: 812 ; and references cited therein -
5b
Lopanik N.Gustafson KR.Lindquist N. J. Nat. Prod. 2004, 67: 1412 - 6
Kageyama M.Tamura T.Nantz MH.Roberts JC.Somfai P.Whritenour DC.Masamune S. J. Am. Chem. Soc. 1990, 11: 27407 -
7a
Evans DA.Carter PH.Carreira EM. Angew. Chem. Int. Ed. 1998, 37: 2354 -
7b
Evans DA.Carter PH.Carreira EM.Charette AB.Prunet JA.Lautens M. J. Am. Chem. Soc. 1999, 121: 7540 - 8
Ohmori K.Ogawa Y.Obitsu T.Ishikawa Y.Nishiyama S.Yamamura S. Angew. Chem. Int. Ed. 2000, 39: 2290 - 9
Manaviazar S.Frigerio M.Bhatia GS.Hummersone MG.Aliev AE.Hale KJ. Org. Lett. 2006, 8: 4477 -
10a
Trost BM.Dong G. Nature (London) 2008, 456: 485 -
10b
Trost BM.Dong G. J. Am. Chem. Soc. 2010, 132: 16403 - 11
Keck GE.Poudel YB.Cummins TJ.Rudra A.Covel JA. J. Am. Chem. Soc. 2011, 133: 744 -
12a
Wender PA.Baryza JL.Bennett CE.Bi FC.Brenner SE.Clarke MO.Horan JC.Kan C.Lacote E.Lippa B.Nell PG.Turner TM. J. Am. Chem. Soc. 2002, 124: 13648 -
12b
Hale KJ.Frigerio M.Manaviazar S.Hummersone MG.Fillingham IJ.Barsukov IG.Damblon CF.Gescher A.Roberts GCK. Org. Lett. 2003, 5: 499 -
12c
Trost BM.Yang H.Thiel OR.Frontier AJ.Brindle CS. J. Am. Chem. Soc. 2007, 129: 2206 -
12d
Keck GE.Li W.Kraft MB.Kedei N.Lewin NE.Blumberg PM. Org. Lett. 2009, 11: 2277 -
12e
See also ref. 2e-g.
- Thomas and Trost reported an unsuccessful trial of the RCM method for C16-C17 double-bond construction:
-
13a
Ball M.Bradshaw BJ.Dumeunier R.Gregson TJ.MacCormick S.Omori H.Thomas EJ. Tetrahedron Lett. 2006, 2223 -
13b
Trost BM.Yang H.Thiel OR.Frontier AJ.Brindle CS. J. Am. Chem. Soc. 2007, 129: 2206 - 14
Nakata T.Takao S.Fukui M.Tanaka T.Oishi T. Tetrahedron Lett. 1983, 24: 3873 -
15a
Saksena AK.Mangiaraeina P. Tetrahedron Lett. 1983, 24: 273 -
15b
Evans DA.Dimare M. J. Am. Chem. Soc. 1986, 108: 2476 -
16a
Heathcock CH.Kiyooka S.Blumenkopf TA.
J. Org. Chem. 1984, 49: 4214 -
16b
Gerlach K.Quitschalle M.Kalesse M. Tetrahedron Lett. 1999, 40: 3533 - The constructions of similar aldehydes via anti-selective allylation have been reported by other groups. See:
-
17a
De Brabander J.Vandewalle M. Synthesis 1994, 855 -
17b
Wender PA.Brabander JD.Harran PG.Jimenez JM.Koehler MFT.Lippa B.Park CM.Shiozaki M. J. Am. Chem. Soc. 1998, 120: 4534 -
17c
Keck GE.Truong AP. Org. Lett. 2005, 7: 2149 - 18
Brownbridge P.Chan TH.Brook MA.Kang GJ. Can. J. Chem. 1983, 61: 688 -
19a
Baxter J.Mata EG.Thomas EJ. Tetrahedron Lett. 1998, 54: 14359 -
19b Voight reported that the
use of TiCl2
(Oi-Pr)2 as
a Lewis acid provided a 5:1 selectivity ratio. See:
Voight EA.Roethle PA.Burke SD. J. Org. Chem. 2004, 69: 4534 - 20
Gennari C.Cozzi PG. Tetrahedron 1988, 44: 5965 - 25
Yoda H.Mizutani M.Takabe K. Heterocycles 1998, 48: 679
References and Notes
Current address: K. Nakagawa-Goto,
School of Pharmacy, University of North Carolina at Chapel Hill,
Chapel Hill,
NC 27599, USA.
For current information, see: http://clinicaltrials.gov.
21
Lactone 24
To
an ice-cold solution of anti-diol 23 (260 mg, 0.8 mmol) in CH2Cl2 (5.0
mL), TFA (0.6 mL, 7.8 mmol) was added. The mixture was stirred at
r.t. for 2.5 h, and then quenched with sat. NaHCO3 at
0 ˚C. The aqueous layer was extracted with CH2Cl2.
The combined organic layers were washed with brine, dried over Na2SO4,
and concentrated in vacuo. Purification by flash chromatography
gave lactone 24 (189 mg, 95%)
as a colorless oil. ¹H NMR (400 MHz, CDCl3):
δ = 7.40-7.25
(m, 5 H), 4.63 (d, J = 11.7
Hz, 1 H), 4.54 (d, J = 11.7
Hz, 1 H), 4.32-4.18 (m, 2 H), 3.76-3.68 (m, 1
H), 2.87 (ddd, J = 17.2,
5.7, 1.2 Hz, 1 H), 2.48 (dd, J = 17.2,
7.8 Hz, 1 H), 2.26-2.18 (m, 2 H), 1.82-1.71 (m,
1 H), 1.27 (d, J = 6.4
Hz, 3 H). HRMS: m/z calcd for
C14H18O4Na [M + Na]+:
273.1103; found: 273.1100.
Methyl Acetal
25
To a solution of lactone 24 (171
mg, 0.7 mmol) in CH2Cl2 (2.0 mL), 2,6-lutidine
(0.2 mL, 1.7 mmol), and TESOTf (0.2 mL, 0.9 mmol) were added at -78 ˚C.
After 0.5 h, the mixture was quenched with sat. NaHCO3 and
then extracted with CH2Cl2 (3×).
The combined organic layers were washed with brine, dried over Na2SO4,
and concentrated in vacuo. Purification by flash chromatography
gave TES ether (205 mg, 92%) as a colorless oil. To a solution
of (i-Pr)2NH (0.25 mL, 1.8
mmol) in THF (1.5 mL), n-BuLi (1.5 M
in hexane, 1.2 mL, 1.8 mmol) was added dropwise at -30 ˚C and
stirred 10 min. After addition of tert-butyl
acetate (0.25 mL, 1.9 mmol) at -78 ˚C, the mixture
was stirred for 1 h, and the TES ether (205 mg, 0.6 mmol) in THF
(2.0 mL) was added slowly. The mixture was stirred for 10 min, quenched with
H2O, and extracted with EtOAc. The organic layer was washed
with brine, dried over Na2SO4, and concentrated
in vacuo. Purification by flash chromatography gave tert-butyl ester (253 mg, 0.5 mmol, 97%)
as a colorless oil, which was dissolved in benzene (2.0 mL) and
MeOH (0.5 mL). Methylorthoformate (0.6 mL, 5.5 mmol) and PPTS (14
mg, 0.055 mmol) were added. After stirring at r.t. for 2 h, the mixture
was quenched with sat. NaHCO3. The whole was extracted
with EtOAc (3×). The combined organic layers were washed
with brine, dried over Na2SO4, and concen-trated
in vacuo. Purification by flash chromatography gave methyl acetal 25 (153 mg, 91%) as a colorless
oil. ¹H NMR (400 MHz, CDCl3): δ = 7.40-7.25
(m, 5 H), 4.66 (d, J = 12.0 Hz,
1 H), 4.60 (d, J = 12.0
Hz, 1 H), 4.16-4.04 (m, 1 H), 3.64-3.50 (m, 2
H), 3.23 (s, 3 H), 2.71 (d, J = 13.7
Hz, 1 H), 2.51 (d, J = 13.7
Hz, 1 H), 2.32 (ddd, J = 12.5,
4.7, 1.8 Hz, 1 H), 1.94-1.87 (m, 1 H), 1.60-1.52
(m, 1 H), 1.46 (s, 9 H), 1.35-1.24 (m, 1 H), 1.19 (d, J = 6.4 Hz,
3 H). HRMS:
m/z calcd
for C27H46O6SiNa [M + Na]+:
517.2961; found: 517.2974.
Thioketal 26 A solution of methyl acetal 25 (175 mg, 0.46 mmol) in MeNO2 (2.0 mL) and CH2Cl2 (1.0 mL) was cooled to -45 ˚C. 1,3-Propanedithiol (0.15 mL, 1.5 mmol) and BF3˙OEt2 (0.3 mL, 2.4 mmol) were added in succession. The mixture was gradually warmed to 0 ˚C over 1 h and purified directly by column chromatography to obtain thioketal 26 (160 mg, 91%).
24
TBS ether 27
To
a solution of thioketal 26 (226 mg, 0.59
mmol) in DMF (2.0 mL), imidazole (320 mg, 4.7 mmol) and TBSCl (304 mg,
2.0 mmol) were added, and the mixture was stirred at r.t. overnight.
After quenching with sat. NaHCO3, the mixture was extracted
with EtOAc (3×). The combined organic layers
were washed with brine, dried over Na2SO4,
and concentrated in vacuo. Purification by flash chromatography gave
TBS ether 25 (254 mg, 87%) as
a colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 7.36-7.33
(m, 3 H), 7.31-7.25 (m, 2 H), 4.87-4.78 (m, 1
H), 4.55 (s, 2 H), 4.21 (ddd, J = 10.5, 4.5,
2.0 Hz, 1 H), 3.20 (dd, J = 17.2,
2.2 Hz, 1 H), 3.02-2.78 (m, 5 H), 2.45 (ddd, J = 14.1,
2.6, 2.2 Hz, 1 H), 2.17 (s, 2 H), 2.10-1.91 (m, 1 H), 2.34-2.21
(m, 4 H), 1.64-1.55 (m, 1 H), 1.13 (d, J = 6.5
Hz, 3 H), 0.86 (s, 9 H), 0.07 (s, 3 H), 0.01 (s, 3 H). ¹³C
NMR (400 MHz, CDCl3): δ = 167.9, 138.7,
128.5, 127.8, 127.7, 76.6, 73.3, 71.2, 68.0, 45.3, 43.8, 42.0, 36.5, 31.1,
26.9, 26.7, 26.2, 26.0, 24.8, 18.1, 13.4, -4.3, -4.7.
MS (ESI+): m/z = 519 [M+ + Na].
IR (film): νmax = 2951.1, 2927.9,
2851.7, 1737.9, 1249.9, 1240.2, 1222.9, 1101.4, 1076.3, 835.2, 775.4
cm-¹. HRMS: m/z calcd
for C25H40O4S2SiNa [M + Na]+:
519.2030; found: 519.1979. [α]D
²³ +31.2
(c 3.31, CH2Cl2).