Subscribe to RSS
DOI: 10.1055/s-0030-1260822
Synthesis of Two Diastereomers of Iriomoteolide-1a via a Tunable Four-Module Coupling Approach Using Ring-Closing Metathesis as the Key Step
Publication History
Publication Date:
28 June 2011 (online)
Abstract
A tunable four-module coupling approach has been established for assembling the 20-membered macrolactone core related to the proposed structure of iriomoteolide-1a by using ring-closing metathesis as the key step. Two C1-C6 (2E)-diene acid fragments with (4R,5S)- and (4S,5R)-stereogenic centers, respectively, were synthesized via anti-selective aldol reaction and E-selective conjugate addition of Me2CuLi with an alkynoic ester in the presence of TMSCl. The ring-closing metathesis reaction was carried out in the presence of 10 mol% Grubbs second-generation initiator at room temperature to give exclusively the (6E)-cycloalkenes. Our four-module coupling strategy enables efficient synthesis of two diastereomers of the proposed iriomoteolide-1a with opposite chirality at C4 and C5.
Key words
iriomoteolide - macrolide - modular synthesis - ring-closing metathesis - stereoisomers
- Supporting Information for this article is available online:
- Supporting Information
- For isolation and proposed structures of iriomoteolide-1a, -1b, and -1c, see:
-
1a
Tsuda M.Oguchi K.Iwamoto R.Okamoto Y.Kobayashi J.Fukushi E.Kawabata J.Ozawa T.Masuda A.Kitaya Y.Omasa K. J. Org. Chem. 2007, 72: 4469 -
1b
Tsuda T.Oguchi K.Iwamoto R.Okamoto Y.Fukushi E.Kawabata J.Ozawa T.Masuda A. J. Nat. Prod. 2007, 70: 1661 - For total synthesis of the proposed structures and stereomers of iriomoteolide-1a and -1b, see:
-
2a
Xie J.Ma Y.Horne DA. Chem. Commun. 2010, 46: 4770 -
2b
Li S.Chen Z.Xu Z.Ye T. Chem. Commun. 2010, 46: 4773 -
2c
Ghosh AK.Yuan H. Org. Lett. 2010, 12: 3120 -
2d
Fang L.Yang J.Yang F. Org. Lett. 2010, 12: 3124 - For synthesis of fragments of iriomoteolide-1a, see:
-
3a
Fang L.Xue H.Yang J. Org. Lett. 2008, 10: 4645 -
3b
Ghosh AK.Yuan H. Tetrahedron Lett. 2009, 50: 1416 -
3c
Xie J.Horne DA. Tetrahedron Lett. 2009, 50: 4485 -
3d
Xie J.Ma Y.Horne DA. Org. Lett. 2009, 11: 5082 -
3e
Ye Z.Deng L.Qian S.Zhao G. Synlett 2009, 2469 -
3f
Chin Y.-J.Wang S.-Y.Loh T.-P. Org. Lett. 2009, 11: 3674 -
3g
Wang S.-Y.Chin Y.-J.Loh T.-P. Synthesis 2009, 3557 -
3h
Paterson I.Rubenbauer P. Synlett 2010, 571 -
3i
Liu Y.Wang J.Li H.Wu J.Feng G.Dai W.-M. Synlett 2010, 2184 - For our three-module coupling approach in the synthesis of butenoilde stereomers, see:
-
4a
Dai W.-M.Shi L.Li Y. Tetrahedron: Asymmetry 2008, 19: 1549 -
4b
Wang Y.Dai W.-M. Tetrahedron 2010, 66: 187 - For selected reviews on use of RCM in total synthesis, see:
-
5a
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
5b
Gradillas A.Pérez-Castells J. Angew. Chem. Int. Ed. 2006, 45: 6086 -
5c
Hoveyda AH.Malcolmson SJ.Meek SJ.Zhugralin AR. Angew. Chem. Int. Ed. 2010, 49: 34 - For our previous total synthesis using RCM strategy, see:
-
6a
Jin J.Chen Y.Wu J.Dai W.-M. Org. Lett. 2007, 9: 2585 -
6b
Dai W.-M.Chen Y.Jin J.Wu J.Lou J.He Q. Synlett 2008, 1737 -
6c
Sun L.Feng G.Guan Y.Liu Y.Wu J.Dai W.-M. Synlett 2009, 2361 -
6d
Li H.Wu J.Luo J.Dai W.-M. Chem. Eur. J. 2010, 16: 11530 -
6e
Wu D.Li H.Jin J.Wu J.Dai W.-M. Synlett 2011, 895 - 7 For a review on B-alkyl
Suzuki-Miyaura coupling, see:
Chemler SR.Trauner D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4544 -
8a
Abiko A.Liu J.-F.Masamune S. J. Am. Chem. Soc. 1997, 119: 2586 -
8b
Inoue T.Liu J.-F.Buske D.Abiko A. J. Org. Chem. 2002, 67: 5250 - 9
Corey EJ.Fuchs PL. Tetrahedron Lett. 1972, 13: 3769
References and Notes
Characterization
Data for (2
Z
,4
R
,5
S
)-Diene Acid
3a
A pale yellow oil. [α]D
²0 -72.2
(c 2.85, CHCl3). R
f
= 0.28 (17% EtOAc-PE).
IR (film): 2957, 2925, 2858, 1695, 1632, 1254, 1184, 1084 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 5.78
(d, J = 0.8
Hz, 1 H), 5.74 (ddd, J = 17.6,
10.0, 7.0 Hz, 1 H), 5.20-5.14 (m, 2 H), 4.03 (dd, J = 7.6, 7.6,
1 H), 3.65 (quin, J = 7.2
Hz, 1 H), 1.84 (d, J = 1.2
Hz, 3 H), 0.97 (d, J = 6.8
Hz, 3 H), 0.87 (s, 9 H), 0.06 (s, 3 H), 0.03 (s, 3 H); CO2H
not observed. ¹³C NMR (100 MHz, CDCl3): δ = 169.5,
159.4, 139.4, 119.2, 116.6, 77.2, 41.2, 25.7 (3¥), 20.4,
18.2, 14.7, -4.1, -5.0. HRMS (+TOF EI): m/z [M+] calcd
for C15H28O3Si: 284.1808; found:
284.1812.
Characterization Data for
(2
E
,4
R
,5
S
)-Diene Acid
3b
A pale yellow oil. [α]D
²0 -5.3
(c 3.90, CHCl3). R
f
= 0.26 (17% EtOAc-PE).
IR (film): 2958, 2925, 2858, 1693, 1643, 1253, 1087 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 5.73
(s, 1 H), 5.69 (ddd, J = 17.5,
10.0, 7.0 Hz, 1 H), 5.15 (d, J = 17.5 Hz,
1 H), 5.12 (d, J = 11.0
Hz, 1 H), 4.04 (dd, J = 7.0,
7.0 Hz, 1 H), 2.33 (quin, J = 7.0
Hz, 1 H), 2.17 (s, 3 H), 1.00 (d, J = 7.0
Hz, 3 H), 0.86 (s, 9 H), 0.02 (s, 3 H), 0.00 (s, 3 H); CO2H
not observed. ¹³C NMR (125 MHz, CDCl3): δ = 172.3,
164.8, 139.5, 116.6, 116.0, 76.9, 50.6, 25.7 (3¥), 18.1,
17.4, 14.9, -4.1, -5.1. HRMS (+TOF EI): m/z [M+] calcd
for C15H28O3Si: 284.1808; found:
284.1812.
Characterization Data for
(2
E
,4
S
,5
R
)-Diene Acid
3c
A pale yellow oil. [α]D
²0 +4.5
(c 1.65, CHCl3). Other spectroscopic
data are identical to those of 3b.
We obtained an analogous byproduct to 19 from global desilylation of 14 in 27% yield but its structure (compound 26 in Scheme 6 in ref. 3i) was wrongly assigned due to error in its ¹H NMR analysis. A corrected structure based on the newly obtained ¹H NMR and other spectroscopic data is found in Supporting Information of this article.
12Desilylation of an analogous substrate to 14 under the pyridine-buffered HF˙pyridine conditions was reported in ref. 3d without migration of the C11 double bond.
13
Representative
Procedure for the RCM Reaction
To a stirred solution
of 17 (13.8 mg, 2.6¥10-² mmol)
in dry CH2Cl2 (25 mL) at r.t. was added Grubbs
second-generation initiator (2.4 mg, 2.8¥10-³ mmol)
followed by stirring at the same temperature for 1.5 h. The reaction
mixture was condensed under reduced pressure, and the residue was purified
by flash column (silica gel, 35-45% EtOAc in PE)
to afford (2E,4R,5S)-20 (8.9 mg,
68%).
Characterization Data
for (2
E
,4
R
,5
S
)-20
A
pale yellow oil. [α]D
²0 +9.5
(c 0.16, CHCl3); R
f
= 0.39 (60% EtOAc-PE).
IR (film): 3444 (br), 2969, 2936, 1693, 1651, 1455, 1372, 1218,
1009 cm-¹. HRMS (+TOF ESI): m/z [M + Na+] calcd
for C29H46O7Na: 529.3141; found: 529.3141.
For ¹H NMR and ¹³C
NMR spectra, see in Supporting Information.
Characterization
Data for (2
E
,4
S
,5
R
)-23
A
pale yellow oil. [α]D
²0 -24.7
(c 1.33, CHCl3); R
f
= 0.39 (60% EtOAc-PE).
IR (film): 3446 (br), 2926, 1688, 1635, 1456, 1372, 1232, 1163,
1009 cm-¹. HRMS (+TOF EI): m/z [M+] calcd
for C29H46O7: 506.3244; found:
506.3235. For ¹H NMR and ¹³C
NMR, see Supporting Information.
Yang and co-workers reported in ref. 2d that (2E,4R,5S)-20 exits as a 5:1 equilibrating mixture with its keto form in CDCl3. However, we did not observe this phenomenon for our sample. For comparison of the ¹H NMR and ¹³C NMR spectra, see Figures S1 and S2 of Supporting Information. The ¹³C NMR signal for the hemiacetal carbon (C13) of their sample is observed at δ = 96.8 ppm as compared with 99.7 (natural iriomoteolide-1a), 99.5 (our sample 20), and 99.7 (our sample 23) ppm, suggesting that their sample might be a 13R-epimer.