Synlett 2011(15): 2151-2156  
DOI: 10.1055/s-0030-1261191
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

First Tetrabutylanthradithiophene (TBADT) Derivatives for Solution-Processed Thin-Film Transistors

Peng-Yi Huanga, Choongik Kim*b, Ming-Chou Chen*a
a Department of Chemistry, National Central University, Jhong-Li, Taiwan 32054, P. R. of China
e-Mail: mcchen@ncu.edu.tw;
b Department of Chemical and Biomolecular Engineering, Sogang University, 1 Shinsoo-Dong, Mapo-Gu, Seoul 121-742, Korea
e-Mail: choongik@sogang.ac.kr;
Further Information

Publication History

Received 30 April 2011
Publication Date:
24 August 2011 (online)

Abstract

Three new solution-processable tetrabutylanthradithiophene (TBADT)-based organic semiconductors bearing two phenylethynyl, thiophen-2-ylethynyl, and thieno[3,2-b]thiophen-5-ylethynyl substituents have been synthesized and their thermal, optical, and electrochemical properties have been characterized. Preliminary tests of these compounds via drop-casting for thin-film transistors showed p-channel TFT transport with hole mobilities as high as 1.510 cm²/Vs and with a current on/off ratio of 104.

    References and Notes

  • 1a Arias AC. MacKenzie JD. McCulloch I. Rivnay J. Salleo A. Chem. Rev.  2010,  110:  3 
  • 1b Di C A. Liu Y. Yungi Y. Gui Z. Zhu D. Acc. Chem. Res.  2009,  42:  1573 
  • 1c Chabinyc M. Loo Y.-L. J. Macromol. Sci. Polym. Rev.  2006,  46:  1 
  • 1d Dodabalapur A. Nature (London)  2005,  434:  151 
  • 1e Sirringhaus H. Adv. Mater.  2005,  17:  2411 
  • 2a Gao X. Di C. Hu Y. Yang X. Fan H. Zhang F. Liu Y. Li H. Zhu D. J. Am. Chem. Soc.  2010,  132:  3697 
  • 2b Kim C. Chen M.-C. Chiang Y.-J. Guo Y.-J. Youn J. Huang H. Liang Y.-J. Lin Y.-J. Huang Y.-W. Hu T.-S. Lee G.-H. Facchetti A. Marks TJ. Org. Electron.  2010,  11:  801 
  • 2c Pal BN. Dhar BM. See KC. Katz HE. Nat. Mater.  2010,  9:  279 
  • 2d Beverina L. Salice P. Eur. J. Org. Chem.  2010,  7:  1207 
  • 2e Yan H. Chen Z. Zheng Y. Newman CE. Quinn JR. Dolz F. Kastler M. Facchetti A. Nature (London)  2009,  457:  679 
  • 2f Cheng X. Noh Y.-Y. Wang J. Tello M. Frisch J. Blum R.-P. Vollmer A. Rabe JP. Koch N. Sirringhaus H. Adv. Funct. Mater.  2009,  19:  2407 
  • 2g Reese C. Roberts ME. Parkin SR. Bao Z. Adv. Mater.  2009,  21:  3678 
  • 2h Kim C. Facchetti A. Marks TJ. Science  2007,  318:  76 
  • 3a Park SK. Mourey DA. Han J.-I. Anthony JE. Jackson TN. Org. Electron.  2009,  10:  486 
  • 3b Kelly TW. Baude PF. Gerlach C. Ender DE. Muyres D. Hasse MA. Vogel DE. Theiss SD. Chem. Mater.  2004,  16:  4413 
  • 3c Payne MM. Parkin SR. Anthony JE. J. Am. Chem. Soc.  2005,  127:  8028 
  • 3d Gundlach DJ. Lin YY. Jackson TN. Nelson SF. Appl. Phys. Lett.  2002,  80:  2925 
  • 3e Meng H. Bendikov M. Mitchell G. Helgeson R. Wudl F. Bao Z. Siegrist T. Kloc C. Chen CH. Adv. Mater.  2003,  15:  1090 
  • 4a Laquindanum JG. Katz HE. Lovinger AJ. J. Am. Chem. Soc.  1998,  120:  664 
  • 4b Payne MM. Odom SA. Parkin SR. Anthony JE. Org. Lett.  2004,  6:  3325 
  • 4c Jurchescu OD. Subramanian S. Kline RJ. Hudson SD. Anthony JE. Jackson TN. Gundlach DJ. Chem. Mater.  2008,  20:  6733 
  • 4d Chen M.-C. Kim C. Chen S.-Y. Chiang Y.-J. Chung M.-C. Facchetti A. Marks TJ. J. Mater. Chem.  2008,  18:  1029 
  • 5a Youn J. Chen M.-C. Liang Y.-J. Huang H. Ortiz RP. Kim C. Stern C. Hu T.-S. Chen L.-H. Yan J.-Y. Facchetti A. Marks TJ. Chem. Mater.  2010,  22:  5031 
  • 5b Mauldin CE. Puntambekar K. Murphy AR. Liao F. Subramanian V. Frechet JMJ. Delongchamp DM. Fischer DA. Toney MF. Chem. Mater.  2009,  21:  1927 
  • 5c Chen M.-C. Chiang Y.-J. Kim C. Guo Y.-J. Chen S.-Y. Liang Y.-J. Huang Y.-W. Hu T.-S. Lee G.-H. Facchetti A. Marks TJ. Chem. Commun.  2009,  1846 
  • 5d Takimiya K. Kunugi Y. Konda Y. Ebata H. Toyoshima Y. Otsubo T. J. Am. Chem. Soc.  2006,  128:  3044 
  • 5e Xiao K. Liu Y. Qi T. Zhang W. Wang F. Gao J. Qiu W. Ma Y. Cui G. Chen S. Zhan X. Yu G. Qin J. Hu W. Zhu D. J. Am. Chem. Soc.  2005,  127:  13281 
  • 5f Ando S. Nishida J. Tada H. Inoue Y. Tokito S. Yamashita Y. J. Am. Chem. Soc.  2005,  127:  5336 
  • For example, the C-6/C-13 positions of pentacene are sensitive to oxygen in solution when exposed to visible light in air, see:
  • 6a Wolak MA. Jang BB. Palilis LC. Kafafi ZH. J. Phys. Chem. B  2004,  108:  5492 
  • 6b Reddy AR. Bendikov M. Chem. Commun.  2006,  1179 
  • 7a Anthony JE. Brooks JS. Eaton DL. Parkin SR. J. Am. Chem. Soc.  2001,  123:  9482 
  • 7b Sheraw CD. Jackson TN. Eaton DL. Anthony JE. Adv. Mater.  2003,  15:  2009 
  • 7c Li Y. Wu Y. Liu P. Prostran Z. Gardner S. Ong BS. Chem. Mater.  2007,  19:  418 
  • 7d Benard CP. Geng Z. Heuft MA. VanCrey K. Fallis AG. J. Org. Chem.  2007,  72:  7229 
  • 7e Lehnherr D. McDonald R. Tykwinski RR. Org. Lett.  2008,  10:  4163 
  • 8a Payne MM. Parkin SR. Anthony JE. Kuo C.-C. Jackson TN. J. Am. Chem. Soc.  2005,  127:  4986 
  • 8b Subramanian S. Park SK. Parkin SR. Podzorov V. Jackson TN. Anthony JE. J. Am. Chem. Soc.  2008,  130:  2706 
  • 9 Kim C. Huang P.-Y. Jhuang J.-W. Chen M.-C. Ho J.-C. Hu T.-S. Yan J.-Y. Chen L.-H. Lee G.-H. Facchetti A. Marks TJ. Org. Electron.  2010,  11:  1363 
  • 10 Anthony JE. Chem. Rev.  2006,  106:  5028 
  • 12 Reinecke MG. Adickes HW. Pyun C. J. Org. Chem.  1971,  36:  2690 
  • 13 Zhao C. Zhang Y. Ng M.-K. J. Org. Chem.  2007,  72:  6364 
  • 14 Corey EJ. Fuchs PL. Tetrahedron Lett.  1972,  4831 
  • 15 Beny JP. Dhawan SN. Kagan J. Sundlass S. J. Org. Chem.  1982,  11:  2201 
  • 16 The endotherm was not observed in the second run of DSC measurement. After performing the second run (samples were heated above the decomposition temperature), the residues in the DSC cell were monitored by ¹H NMR and were found to be different from the starting ADT. In addition to the color change, the solubility of these ADT (residues) was also dramatically decreased. Since there was no weight loss from TGA, dimerization of the ADT is suspected, see: Coppo P. Yeates SG. Adv. Mater.  2005,  17:  3001 
  • 17 Maliakal A. Raghavachari K. Katz HE. Chandross E. Siegrist T. Chem. Mater.  2004,  16:  4980 
  • 18 It has been reported that alkynyl substitution lowers the LUMO energy for pentacene derivatives as compared to that of unsubstituted pentacene, which hinders their photooxidation. See: Akhtaruzzaman M. Kamata N. Nishida J. Ando S. Tada H. Tomura M. Yamashita Y. Chem. Commun.  2005,  3183 ; see also ref. 7c
  • 19 Yamada H. Yamashita Y. Kikuchi M. Watanabe H. Okujima T. Uno H. Ogawa T. Ohara K. Ono N. Chem. Eur. J.  2005,  11:  6212 
  • 20 Measured with a Pt working electrode in an o-dichloro-benzene solution using 0.1 mol dm Bu4NPF6 as the supporting electrolyte. See: Naraso Nishida J. Kumaki D. Tokito S. Yamashita Y. J. Am. Chem. Soc.  2006,  128:  9598 
  • 21 Similar trends are reported in: Wang J. Liu K. Liu Y.-Y. Song C.-L. Shi Z.-F. Peng J.-B. Zhang H.-L. Cao X.-P. Org. Lett.  2009,  11:  2563 
11

Since three new TBADT derivatives are very soluble in common solvents, no crystal structures were obtained. Thus, the elucidation of interrelationships between molecular structure and the characterization of organic thin-film transistors are not available so far.

22

The solubility of TBADT derivatives was ca. 20 (for 3)
to 40 (for 1 and 2) mg/mL in CHCl3.