Abstract
Dehydrodiisoeugenol (DDIE), a major active lignan from the seed and aril of the fruit of Myristica fragrans Houtt., functions as a potential anti-inflammatory agent by inhibiting lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. However, the metabolism of DDIE remains unknown. This report describes the metabolic fate of DDIE in liver microsomes, urine, and feces of rats treated with DDIE. DDIE metabolites were isolated by sequential column chromatography and high-performance liquid chromatography from liver microsomes incubations, urine, and feces. Nine metabolites (M-1 to M-9 ), including 5 new metabolites, were determined spectroscopically using ultra-violet (UV), mass spectrometry (MS), nuclear magnetic resonance (NMR), and circular dichroism (CD). Analysis of the isolated metabolites showed that DDIE undergoes four major pathways of metabolism in the rat: oxidation (including hydroxylation, hydroformylation, and acetylation), demethylation, ring-opening, and dehydrogenation. In contrast to the metabolites from liver microsomes, the major metabolites in vivo were generated from DDIE by multiple metabolic reactions. Given these results, we describe a metabolic pathway for DDIE in the rat that gives insight into the metabolism of DDIE and the mechanism of DDIE bioactivity in humans.
Key words
Myristicaceae -
Myristica fragrans
- lignans - dehydrodiisoeugenol - metabolism
References
1
Thompson L U, Rickard S E, Orcheson L J, Seidl M M.
Flaxseed and its lignan and oil components reduce mammary tumor growth at a late stage of carcinogenesis.
Carcinogenesis.
1996;
17
1373-1376
2
Thompson L U, Seidl M M, Rickard S E, Fong H H.
Antitumorigenic effect of a mammalian lignan precursor from flaxseed.
Nutr Cancer.
1996;
26
159-165
3
Phipps W R, Martini M C, Lampe J W, Slavin J L, Kurzer M S.
Effect of flax seed ingestion on the menstrual cycle.
J Clin Endocrinol Metab.
1993;
77
1215-1219
4
Yang X W, Gao J S.
Study on the chemical constituent of Myristica fragrans .
Chin Tradit Pat Med.
1994;
16
38-40
5 Pharmacopoeia of the People's Republic of China, Volume I. Beijing; Chemical Industry Press 2005: 90-91
6
Murakami Y, Shoji M, Hirata A, Tanaka S, Yokoe I, Fujisawa S.
Dehydrodiisoeugenol, an isoeugenol dimer, inhibits lipopolysaccharide- stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages.
Arch Biochem Biophys.
2005;
434
326-332
7
Shin K H, Kim O N, Woo W S.
Studies on crude drugs acting on drug-metabolizing enzymes. Part 12. Isolation of hepatic drug metabolism inhibitors from the seeds of Myristica fragrans .
Arch Pharmacol Res.
1988;
11
240-243
8
Shin K H, Woo W S.
Inhibition and induction of hepatic mixed function oxidase by phenylpropanoides from the seeds of Myristica fragrans .
Han'guk Saenghwa Hakhoechi.
1990;
23
122-127
9
Hattori M, Hada S, Watahiki A, Ihara H, Shu Y Z, Kakiuchi N, Mizuno T, Namba T.
Studies on dental caries prevention by traditional medicines. X. Antibacterial action of phenolic components from mace against Streptococcus mutans .
Chem Pharm Bull.
1986;
34
3885-3893
10
Hattori M, Yang X W, Miyashiro H, Namba T.
Inhibitory effects of monomeric and dimeric phenylpropanoids from mace on lipid peroxidation in vivo and in vitro .
Phytother Res.
1993;
7
395-401
11
Yang X W, Huang X, Ma L, Wu Q, Xu W.
The intestinal permeability of neolignans from the seeds of Myristica fragrans in the Caco-2 cell monolayer model.
Planta Med.
2010;
76
1587-1591
12
Li F, Yang X W.
Simultaneous determination of diastereomers (+)-licarin A and isolicarin A from Myristica fragrans in rat plasma by HPLC and its application to their pharmacokinetics.
Planta Med.
2008;
74
880-884
13
Li F, Yang X W.
Determination of dehydrodiisoeugenol in rat tissues using HPLC method.
Biomed Chromatogr.
2008;
22
1206-1212
14
Li F, Yang X W.
Biotransformation of myrislignan by rat liver microsomes in vitro .
Phytochemistry.
2008;
69
765-771
15
Li F, Yang X W.
Three new neolignans from the aril of Myristica fragrans .
Helv Chim Acta.
2007;
90
1491-1496
16
Enriquez R G, Chavez M A, Reynolds W F.
Phytochemical investigations of plants of the genus Aristolochia , 1. Isolation and NMR spectral characterization of eupomatenoid derivatives.
J Nat Prod.
1984;
47
896-899
17
Kuroda K, Nakagawa-Izumi A.
Analytical pyrolysis of lignin: products stemming from β -5 substructures.
Org Geochem.
2006;
37
665-673
18
Hattori M, Yang X W, Shu Y Z, Kakiuchi N, Tezuka Y, Kikuchi T, Namba T.
New Constituents of the aril of Myristica fragrans .
Chem Pharm Bull.
1988;
36
648-653
19
Rouger J, Robert A.
Ether bond cleavage by the action of potassium, in hexamethylphosphoramide solution in substances containing the dihydrobenzofuran structure considered as lignin model substances.
Chimique de France.
1972;
10
4039-4046
20
Tsai I L, Hsieh C F, Duht C Y.
Additional cytotoxic neolignans from Persea obovatifolla .
Phytochemistry.
1998;
48
1371-1375
21
Paulo J C, Benevides P S, Massuo J K.
Phenylpropanoids and neolignans from Piper regnellii .
Phytochemistry.
1999;
52
339-343
22
Ito K, Ichino K, Iida T, Lai J.
Neolignans from Magnolia kachirachirai .
Phytochemistry.
1984;
23
2643-2645
23
Cao Y F, Zhang Y Y, Li J, Ge G B, Hu D, Liu H X, Huang T, Wang Y C, Fang Z Z, Sun D X, Huo H, Yin J, Yang L.
CYP3A catalyses schizandrin biotransformation in human, minipig and rat liver microsomes.
Xenobiotica.
2010;
40
38-47
24
Chauret N, Li C, Ducharme Y, Trimble L A, Yergey J A, Ramachandran C, Nicoll-Griffith D A.
In vitro and in vivo biotransformations of the naphthalenic lignan lactone 5-lipoxygenase inhibitor, L-702, 539.
Drug Metab Dispos.
1995;
23
65-71
25
Bai X, Xie Y, Liu J, Qu J, Kano Y, Yuan D.
Isolation and identification of urinary metabolites of kakkalide in rats.
Drug Metab Dispos.
2010;
38
281-286
26
Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, Nishibe S, Adlercreutz H.
In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol.
J Agric Food Chem.
2001;
49
3178-3186
27
Xie L H, Ahn E M, Akao T, Abdel-Hafez A A, Nakamura N, Hattori M.
Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria.
Chem Pharm Bull.
2003;
51
378-384
28
Ikeya Y, Taguchi H, Mitsuhashi H, Sasaki H, Matsuzaki T, Aburada M, Hosoya E.
Studies on the metabolism of gomisin A (TJN-101). I. Oxidative products of gomisin A formed by rat liver S9 mix.
Chem Pharm Bull.
1988;
36
2061-2069
29
Smeds A I, Saarinen N M, Hurmerinta T T, Penttinen P E, Sjoholm R E, Makela S I.
Urinary excretion of lignans after administration of isolated plant lignans to rats: the effect of single dose and ten-day exposures.
J Chromatogr B.
2004;
813
303-312
30
Xie L H, Akao T, Hamasaki K, Deyama T, Hattori M.
Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol.
Chem Pharm Bull.
2003;
51
508-515
Prof. Dr. Xiu-Wei Yang
State Key Laboratory of Natural and Biomimetic Drugs Department of Natural Medicines School of Pharmaceutical Sciences Peking University
100191 Beijing
China
Phone: +86 10 82 80 51 06
Fax: +86 10 82 80 27 24
Email: xwyang@bjmu.edu.cn