Semin Neurol 2011; 31(3): 307-316
DOI: 10.1055/s-0031-1287656
© Thieme Medical Publishers

Evidence for Viral Etiology of Multiple Sclerosis

Alexandros Tselis1
  • 1Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan
Further Information

Publication History

Publication Date:
30 September 2011 (online)

ABSTRACT

The etiology of multiple sclerosis (MS) is unknown, and several hypotheses have been advanced over the past century to explain it. Despite much effort, no single cause has been established. One of the most appealing hypotheses is that of infection due to a neurotropic infectious agent, possibly a virus. There are several lines of data to support this hypothesis. First, there are clear examples of inflammatory demyelinating disease caused directly or indirectly by viral infections in both humans and animals. Second, there is a strong environmental component to multiple sclerosis. Finally, there is aberrant immune reactivity against various viruses. Recent candidates have included measles and the related canine distemper virus, human herpesvirus 6, human endogenous retroviruses, and Epstein-Barr virus. The evidence is most extensive for the latter and will be discussed in some detail.

REFERENCES

  • 1 Brody J A. Epidemiology of multiple sclerosis and a possible virus aetiology.  Lancet. 1972;  2 (7769) 173-176
  • 2 Kurtzke J F, Hyllested K. Multiple sclerosis in the Faroe Islands: I. Clinical and epidemiological features.  Ann Neurol. 1979;  5 (1) 6-21
  • 3 Kurtzke J F. Epidemiologic evidence for multiple sclerosis as an infection.  Clin Microbiol Rev. 1993;  6 (4) 382-427
  • 4 Whitton J L, Fujinami R S. Viruses as triggers of autoimmunity: facts and fantasies.  Curr Opin Microbiol. 1999;  2 (4) 392-397
  • 5 Dessau R B, Nielsen L P, Frederiksen J L. Absence of entero- and cardioviral RNA in multiple sclerosis brain tissue.  Acta Neurol Scand. 1997;  95 (5) 284-286
  • 6 Zoll J, Erkens Hulshof S, Lanke K et al.. Saffold virus, a human Theiler's-like cardiovirus, is ubiquitous and causes infection early in life.  PLoS Pathog. 2009;  5 (5) e1000416
  • 7 Matthews A E, Weiss S R, Paterson Y. Murine hepatitis virus—a model for virus-induced CNS demyelination.  J Neurovirol. 2002;  8 (2) 76-85
  • 8 Lane T E, Hosking M P. The pathogenesis of murine coronavirus infection of the central nervous system.  Crit Rev Immunol. 2010;  30 (2) 119-130
  • 9 Beineke A, Puff C, Seehusen F, Baumgärtner W. Pathogenesis and immunopathology of systemic and nervous canine distemper.  Vet Immunol Immunopathol. 2009;  127 (1-2) 1-18
  • 10 Astrom K E, Mancall E L, Richardson Jr E P. Progressive multifocal leuko-encephalopathy; a hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin's disease.  Brain. 1958;  81 (1) 93-111
  • 11 Zurhein G, Chou S M. Particles resembling papovaviruses in human cerebral demyelinating disease.  Science. 1965;  148 1477-1479
  • 12 Padgett B L, Walker D L, ZuRhein G M, Eckroade R J, Dessel B H. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy.  Lancet. 1971;  1 (7712) 1257-1260
  • 13 Bouteille M, Fontaine C et al.. Sur un cas de encephalite asuaigue a inclusions: etude anatomoclinique et ultrastructurale.  Rev Neurol (Paris). 1965;  113 454-458
  • 14 Horta-Barbosa L, Fuccillo D A, Sever J L, Zeman W. Subacute sclerosing panencephalitis: isolation of measles virus from a brain biopsy.  Nature. 1969;  221 (5184) 974
  • 15 Payne F E, Baublis J V, Itabashi H H. Isolation of measles virus from cell cultures of brain from a patient with subacute sclerosing panencephalitis.  N Engl J Med. 1969;  281 (11) 585-589
  • 16 Gilden D H, Devlin M E, Burgoon M P, Owens G P. The search for virus in multiple sclerosis brain.  Mult Scler. 1996;  2 (4) 179-183
  • 17 Gilden D H. A search for virus in multiple sclerosis.  Hybrid Hybridomics. 2002;  21 (2) 93-97
  • 18 Adams J M. Measles antibodies in patients with multiple sclerosis.  Neurology. 1967;  17 (7) 707-710, passim
  • 19 Cook S D, Dowling P C. Multiple sclerosis and viruses: an overview.  Neurology. 1980;  30 (7 Pt 2) 80-91
  • 20 Warner H B, Carp R I. Multiple sclerosis and Epstein-Barr virus.  Lancet. 1981;  2 (8258) 1290
  • 21 Bray P F, Culp K W, McFarlin D E, Panitch H S, Torkelson R D, Schlight J P. Demyelinating disease after neurologically complicated primary Epstein-Barr virus infection.  Neurology. 1992;  42 (2) 278-282
  • 22 Pender M P. Preventing and curing multiple sclerosis by controlling Epstein-Barr virus infection.  Autoimmun Rev. 2009;  8 (7) 563-568
  • 23 Bray P F, Bloomer L C, Salmon V C, Bagley M H, Larsen P D. Epstein-Barr virus infection and antibody synthesis in patients with multiple sclerosis.  Arch Neurol. 1983;  40 (7) 406-408
  • 24 Larsen P D, Bloomer L C, Bray P F. Epstein-Barr nuclear antigen and viral capsid antigen antibody titers in multiple sclerosis.  Neurology. 1985;  35 (3) 435-438
  • 25 Myhr K M, Riise T, Barrett-Connor E et al.. Altered antibody pattern to Epstein-Barr virus but not to other herpesviruses in multiple sclerosis: a population based case-control study from western Norway.  J Neurol Neurosurg Psychiatry. 1998;  64 (4) 539-542
  • 26 Sumaya C V, Myers L W, Ellison G W, Ench Y. Increased prevalence and titer of Epstein-Barr virus antibodies in patients with multiple sclerosis.  Ann Neurol. 1985;  17 (4) 371-377
  • 27 Shirodaria P V, Haire M, Fleming E, Merrett J D, Hawkins S A, Roberts S D. Viral antibody titers. Comparison in patients with multiple sclerosis and rheumatoid arthritis.  Arch Neurol. 1987;  44 (12) 1237-1241
  • 28 Alotaibi S, Kennedy J, Tellier R, Stephens D, Banwell B. Epstein-Barr virus in pediatric multiple sclerosis.  JAMA. 2004;  291 (15) 1875-1879
  • 29 Pohl D, Krone B, Rostasy K et al.. High seroprevalence of Epstein-Barr virus in children with multiple sclerosis.  Neurology. 2006;  67 (11) 2063-2065
  • 30 Bray P F, Luka J, Bray P F, Culp K W, Schlight J P. Antibodies against Epstein-Barr nuclear antigen (EBNA) in multiple sclerosis CSF, and two pentapeptide sequence identities between EBNA and myelin basic protein.  Neurology. 1992;  42 (9) 1798-1804
  • 31 Operskalski E A, Visscher B R, Malmgren R M, Detels R. A case-control study of multiple sclerosis.  Neurology. 1989;  39 (6) 825-829
  • 32 Haahr S, Koch-Henriksen N, Møller-Larsen A, Eriksen L S, Andersen H M. Increased risk of multiple sclerosis after late Epstein-Barr virus infection: a historical prospective study.  Mult Scler. 1995;  1 (2) 73-77
  • 33 Lindberg C, Andersen O, Vahlne A, Dalton M, Runmarker B. Epidemiological investigation of the association between infectious mononucleosis and multiple sclerosis.  Neuroepidemiology. 1991;  10 (2) 62-65
  • 34 Nielsen T R, Rostgaard K, Nielsen N M et al.. Multiple sclerosis after infectious mononucleosis.  Arch Neurol. 2007;  64 (1) 72-75
  • 35 Thacker E L, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis.  Ann Neurol. 2006;  59 (3) 499-503
  • 36 Holmøy T, Vartdal F. Cerebrospinal fluid T cells from multiple sclerosis patients recognize autologous Epstein-Barr virus-transformed B cells.  J Neurovirol. 2004;  10 (1) 52-56
  • 37 Holmøy T, Kvale EØ, Vartdal F. Cerebrospinal fluid CD4 + T cells from a multiple sclerosis patient cross-recognize Epstein-Barr virus and myelin basic protein.  J Neurovirol. 2004;  10 (5) 278-283
  • 38 Lünemann J D, Edwards N, Muraro P A et al.. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis.  Brain. 2006;  129 (Pt 6) 1493-1506
  • 39 Ascherio A, Munger K L, Lennette E T et al.. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study.  JAMA. 2001;  286 (24) 3083-3088
  • 40 Sundström P, Juto P, Wadell G et al.. An altered immune response to Epstein-Barr virus in multiple sclerosis: a prospective study.  Neurology. 2004;  62 (12) 2277-2282
  • 41 Levin L I, Munger K L, Rubertone M V et al.. Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis.  JAMA. 2005;  293 (20) 2496-2500
  • 42 DeLorenze G N, Munger K L, Lennette E T, Orentreich N, Vogelman J H, Ascherio A. Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up.  Arch Neurol. 2006;  63 (6) 839-844
  • 43 Roström B, Link H, Laurenzi M A, Kam-Hansen S, Norrby E, Wahren B. Viral antibody activity of oligoclonal and polyclonal immunoglobulins synthesized within the central nervous system in multiple sclerosis.  Ann Neurol. 1981;  9 (6) 569-574
  • 44 Salmi A, Reunanen M, Ilonen J, Panelius M. Intrathecal antibody synthesis to virus antigens in multiple sclerosis.  Clin Exp Immunol. 1983;  52 (2) 241-249
  • 45 Gilden D H. Infectious causes of multiple sclerosis.  Lancet Neurol. 2005;  4 (3) 195-202
  • 46 Rand K H, Houck H, Denslow N D, Heilman K M. Molecular approach to find target(s) for oligoclonal bands in multiple sclerosis.  J Neurol Neurosurg Psychiatry. 1998;  65 (1) 48-55
  • 47 Sargsyan S A, Shearer A J, Ritchie A M et al.. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis.  Neurology. 2010;  74 (14) 1127-1135
  • 48 Owens G P, Bennett J L, Lassmann H et al.. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid.  Ann Neurol. 2009;  65 (6) 639-649
  • 49 Pohl D, Rostasy K, Jacobi C et al.. Intrathecal antibody production against Epstein-Barr and other neurotropic viruses in pediatric and adult onset multiple sclerosis.  J Neurol. 2010;  257 (2) 212-216
  • 50 Biebl A, Webersinke C, Traxler B et al.. Fatal Epstein-Barr virus encephalitis in a 12-year-old child: an underappreciated neurological complication?.  Nat Clin Pract Neurol. 2009;  5 (3) 171-174
  • 51 Menet A, Speth C, Larcher C et al.. Epstein-Barr virus infection of human astrocyte cell lines.  J Virol. 1999;  73 (9) 7722-7733
  • 52 Casiraghi C, Dorovini-Zis K, Horwitz M S. Epstein-Barr virus infection of human brain microvessel endothelial cells: a novel role in multiple sclerosis.  J Neuroimmunol. 2011;  230 (1-2) 173-177
  • 53 Morré S A, van Beek J, De Groot C J et al.. Is Epstein-Barr virus present in the CNS of patients with MS?.  Neurology. 2001;  56 (5) 692
  • 54 Willis S N, Stadelmann C, Rodig S J et al.. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain.  Brain. 2009;  132 (Pt 12) 3318-3328
  • 55 Serafini B, Rosicarelli B, Franciotta D et al.. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain.  J Exp Med. 2007;  204 (12) 2899-2912
  • 56 Sanders V J, Felisan S, Waddell A, Tourtellotte W W. Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction.  J Neurovirol. 1996;  2 (4) 249-258
  • 57 Buljevac D, van Doornum G J, Flach H Z et al.. Epstein-Barr virus and disease activity in multiple sclerosis.  J Neurol Neurosurg Psychiatry. 2005;  76 (10) 1377-1381
  • 58 Torkildsen O, Nyland H, Myrmel H, Myhr K M. Epstein-Barr virus reactivation and multiple sclerosis.  Eur J Neurol. 2008;  15 (1) 106-108
  • 59 Lycke J, Svennerholm B, Hjelmquist E et al.. Acyclovir treatment of relapsing-remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study.  J Neurol. 1996;  243 (3) 214-224
  • 60 Bech E, Lycke J, Gadeberg P et al.. A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS.  Neurology. 2002;  58 (1) 31-36
  • 61 Christensen T. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses.  Rev Med Virol. 2005;  15 (3) 179-211
  • 62 Christensen T. HERVs in neuropathogenesis.  J Neuroimmune Pharmacol. 2010;  5 (3) 326-335
  • 63 Perron H, Geny C, Laurent A et al.. Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles.  Res Virol. 1989;  140 (6) 551-561
  • 64 Perron H, Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation.  Clin Rev Allergy Immunol. 2010;  39 (1) 51-61
  • 65 Perron H, Bernard C, Bertrand J B et al.. Endogenous retroviral genes, herpesviruses and gender in multiple sclerosis.  J Neurol Sci. 2009;  286 (1-2) 65-72
  • 66 Johnston J B, Silva C, Holden J, Warren K G, Clark A W, Power C. Monocyte activation and differentiation augment human endogenous retrovirus expression: implications for inflammatory brain diseases.  Ann Neurol. 2001;  50 (4) 434-442
  • 67 Miller J R, Burke A M, Bever C T. Occurrence of oligoclonal bands in multiple sclerosis and other CNS diseases.  Ann Neurol. 1983;  13 (1) 53-58
  • 68 McLean B N, Miller D, Thompson E J. Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behçet's disease involving the nervous system.  J Neurol Neurosurg Psychiatry. 1995;  58 (5) 548-554
  • 69 Cohen O, Biran I, Steiner I. Cerebrospinal fluid oligoclonal IgG bands in patients with spinal arteriovenous malformation and structural central nervous system lesions.  Arch Neurol. 2000;  57 (4) 553-557
  • 70 Choo Q L, Kuo G, Weiner A J, Overby L R, Bradley D W, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome.  Science. 1989;  244 (4902) 359-362
  • 71 Chang Y, Cesarman E, Pessin M S et al.. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.  Science. 1994;  266 (5192) 1865-1869

Alexandros TselisM.D. Ph.D. 

Associate Professor, Department of Neurology, Wayne State University School of Medicine

4201 St. Antoine Street, UHC-8D, Detroit, MI 48201

Email: atselis@med.wayne.edu