References and Notes
1 For Part 95, see: Fuchsenberger M.
Forke R.
Knölker
H.-J.
Synlett
2011,
2056
For reviews, see:
2a
Chakraborty DP.
Roy S. In Progress in the Chemistry of Organic Natural
Products
Vol. 57:
Herz W.
Grisebach H.
Kirby GW.
Steglich W.
Tamm C.
Springer-Verlag;
Wien:
1991.
p.71
2b
Chakraborty DP.
In The Alkaloids
Vol.
44:
Cordell
GA.
Academic
Press;
New York:
1993.
p.257
2c
Knölker H.-J.
Reddy KR.
Chem.
Rev.
2002,
102:
4303
2d
Knölker H.-J.
Top. Curr. Chem.
2005,
244:
115
2e
Knölker H.-J.
Reddy KR. In
The Alkaloids
Vol. 65:
Cordell GA.
Academic
Press;
Amsterdam:
2008.
p.1
2f
Gruner KK.
Knölker H.-J. In
Heterocycles in Natural Product Synthesis
Majumdar KC.
Chattopadhyay SK.
Wiley-VCH;
Weinheim:
2011.
p.341
3a
Knölker H.-J.
Curr. Org. Synth.
2004,
1:
309
3b
Knölker H.-J.
Chem. Lett.
2009,
38:
8
For alternative recent applications,
see:
4a
Kuwahara A.
Nakano K.
Nozaki K.
J.
Org. Chem.
2005,
70:
413
4b
Campeau L.-C.
Parisien M.
Jean A.
Fagnou K.
J. Am. Chem. Soc.
2006,
128:
581
4c
Bedford RB.
Betham M.
J. Org. Chem.
2006,
71:
9403
4d
Scott TL.
Yu X.
Gorugantula SP.
Carrero-Martínez G.
Söderberg BCG.
Tetrahedron
2006,
62:
10835
4e
Liu Z.
Larock RC.
Tetrahedron
2007,
63:
347
4f
Ackermann L.
Althammer A.
Angew. Chem. Int. Ed.
2007,
46:
1627
4g
Bernal P.
Benavides A.
Bautista R.
Tamariz J.
Synthesis
2007,
1943
4h
St. Jean DJ.
Poon SF.
Schwarzenbach JL.
Org. Lett.
2007,
9:
4893
4i
Ueno A.
Kitawaki T.
Chida N.
Org.
Lett.
2008,
10:
1999
4j
Tsang WCP.
Munday RH.
Brasche G.
Zheng N.
Buchwald SL.
J. Org. Chem.
2008,
73:
7603
4k
Sridharan V.
Martín MA.
Menéndez JC.
Eur. J. Org. Chem.
2009,
4614
4l
Youn SW.
Bihn JH.
Kim BS.
Org. Lett.
2011,
13:
3738
For reviews, see:
5a
Knölker H.-J.
Synlett
2002,
371
5b
Knölker H.-J.
Chem. Soc. Rev.
1999,
28:
151
5c
Knölker H.-J.
Braier A.
Bröcher DJ.
Cämmerer S.
Fröhner W.
Gonser P.
Hermann H.
Herzberg D.
Reddy KR.
Rohde G.
Pure
Appl. Chem.
2001,
73:
1075
For selected applications, see:
6a
Knölker H.-J.
Bauermeister M.
Bläser D.
Boese R.
Pannek J.-B.
Angew.
Chem., Int. Ed. Engl.
1989,
28:
223 ; Angew. Chem. 1989, 101, 225
6b
Knölker H.-J.
Bauermeister M.
J.
Chem. Soc., Chem. Commun.
1989,
1468
6c
Knölker H.-J.
Bauermeister M.
J.
Chem. Soc., Chem. Commun.
1990,
664
6d
Knölker H.-J.
Bauermeister M.
Heterocycles
1991,
32:
2443
6e
Knölker H.-J.
Bauermeister M.
Pannek J.-B.
Chem. Ber.
1992,
125:
2783
6f
Knölker H.-J.
Bauermeister M.
Pannek J.-B.
Bläser D.
Boese R.
Tetrahedron
1993,
49:
841
6g
Knölker H.-J.
Bauermeister M.
Tetrahedron
1993,
49:
11221
6h
Knölker H.-J.
Bauermeister M.
Pannek J.-B.
Wolpert M.
Synthesis
1995,
397
6i
Knölker H.-J.
Hopfmann T.
Tetrahedron
Lett.
1995,
36:
5339
6j
Knölker H.-J.
Fröhner W.
Tetrahedron
Lett.
1997,
38:
1535
6k
Knölker H.-J.
Baum E.
Hopfmann T.
Tetrahedron
1999,
55:
10391
6l
Knölker H.-J.
Fröhner W.
Tetrahedron
Lett.
1999,
40:
6915
6m
Knölker H.-J.
Wolpert M.
Tetrahedron
2003,
59:
5317
6n
Knölker
H.-J.
Fröhner W.
Reddy KR.
Eur. J. Org. Chem.
2003,
740
6o
Knott KE.
Auschill S.
Jäger A.
Knölker H.-J.
Chem.
Commun.
2009,
1467
7
Feng N.
Ye W.
Wu P.
Huang Y.
Xie H.
Wei X.
J.
Antibiot.
2007,
60:
179
8a For
isolation, see: Kato S.
Shindo K.
Kataoka Y.
Yamagishi Y.
Mochizuki J.
J. Antibiot.
1991,
44:
903
8b For racemic synthesis,
see: Knölker H.-J.
Fröhner W.
Wagner A.
Tetrahedron
Lett.
1998,
39:
2947
8c For enantioselective synthesis,
see: Czerwonka R.
Reddy KR.
Baum E.
Knölker H.-J.
Chem. Commun.
2006,
711
9a For
isolation, see: Shin-ya K.
Tanaka M.
Furihata K.
Hayakawa Y.
Seto H.
Tetrahedron
Lett.
1993,
34:
4943
For racemic synthesis, see:
9b
Knölker H.-J.
Fröhner W.
Synlett
1997,
1108
9c
Fröhner W.
Reddy KR.
Knölker H.-J.
Heterocycles
2007,
74:
895
9d For enantioselective synthesis,
see: Knölker H.-J.
Baum E.
Reddy KR.
Tetrahedron
Lett.
2000,
41:
1171
10a For
isolation, see: Sin-ya K.
Shimizu S.
Kunigami T.
Furihata K.
Seto H.
J. Antibiot.
1995,
48:
574
10b For racemic synthesis,
see: Knölker H.-J.
Fröhner W.
Tetrahedron Lett.
1998,
39:
2537
10c For enantioselective synthesis,
see: Knölker H.-J.
Baum E.
Reddy KR.
Chirality
2000,
12:
526
11a
Knölker H.-J.
Gonser P.
Synlett
1992,
517
11b
Knölker H.-J.
Gonser P.
Jones PG.
Synlett
1994,
405
11c
Knölker H.-J.
Baum G.
Foitzik N.
Goesmann H.
Gonser P.
Jones PG.
Röttele H.
Eur. J. Inorg. Chem.
1998,
993
11d
Knölker H.-J.
Baum E.
Gonser P.
Rohde G.
Röttele H.
Organometallics
1998,
17:
3916
11e
Knölker H.-J.
Chem. Rev.
2000,
100:
2941
12
Fischer EO.
Fischer RD.
Angew. Chem.
1960,
72:
919
13a
Cornélis A.
Laszlo P.
Synthesis
1985,
909
13b
Laszlo P.
Pennetreau P.
J. Org. Chem.
1987,
52:
2407
13c
Gigante B.
Prazeres AO.
Marcelo-Curto MJ.
Cornélis A.
Laszlo P.
J. Org. Chem.
1995,
60:
3445
14 Spectroscopic data for synthetic streptoverticillin
(1): Light-yellow solid; mp 156-157 ˚C; [α]D
²0 +24.0
(c = 0.1,
MeOH) (Lit.6 [α]D
²0 +18.4, c = 0.179,
MeOH); UV (MeOH): λ = 220,
242, 251, 262, 283, 293, 328, 340 nm; IR (ATR): 3475, 3293,
3055, 2955, 2926, 2850, 2823, 1608, 1500, 1451, 1398, 1348, 1318,
1304, 1271, 1225, 1194, 1166, 1148, 1086, 1060, 1001, 965, 934,
888, 872, 839, 787, 743, 702, 642 cm-¹; ¹H
NMR (500 MHz, methanol-d
4): δ = 1.27 (d, J = 6.2 Hz,
3 H), 2.45 (s, 3 H), 3.04 (dd, J = 14.1,
6.6 Hz, 1 H), 3.13 (dd, J = 14.1,
6.9 Hz, 1 H), 3.90 (s, 3 H), 4.10 (s, 3 H),
4.15 (sext, J = 6.4 Hz,
1 H), 7.14 (t, J = 7.8 Hz,
1 H), 7.35 (t, J = 8.1 Hz,
1 H), 7.47 (d, J = 8.1 Hz,
1 H), 8.16 (d, J = 7.8 Hz,
1 H), 10.30 (br s, 1 H); ¹³C
NMR and DEPT (75 MHz, methanol-d
4): δ = 13.32
(CH3), 23.42 (CH3), 39.19 (CH2),
61.07 (CH3), 61.57 (CH3), 69.17 (CH), 111.79
(CH), 115.90 (C), 117.36 (C), 119.93 (CH), 123.39 (CH), 123.76 (C),
126.16 (CH), 130.30 (C), 139.14 (C), 141.84 (C), 145.50 (C), 147.80
(C); MS (EI): m/z (%) = 299
(71) [M+], 284 (25), 254 (100),
240 (7), 224 (8), 210 (10); HRMS:
m/z calcd for C18H21NO3:
299.1521; found: 299.1518.
15
Flack HD.
Acta
Crystallogr., Sect. A: Found. Crystallogr.
1983,
39:
876
16 Crystal data for 6-bromostreptoverticillin
(16): C18H20BrNO3;
crystal size: 0.49 × 0.11 × 0.11 mm³; M = 378.26
g mol-¹; monoclinic; space group: P21; λ = 0.71073 Å; a = 12.8825
(10), b = 4.8516
(4), c = 13.7636
(11) Å, β = 108.909
(4)˚; V = 813.81
(11) ų; Z = 2; ρ
c = 1.544
g cm-³; µ = 2.540 mm-¹; T = 198 (2) K;
θ range = 1.56-30.00˚;
reflections collected: 16453, independent: 4653 (R
int = 0.0532).
The structure was solved by direct methods and refined by full-matrix
least squares on F
²; R
1 = 0.0290,
wR
2 = 0.0586 [I > 2σ(I)]; maximal residual electron
density: 0.395 e Å-³; absolute
structure (Flack parameter): χ = -0.006
(6). CCDC-835819.