Synlett 2012; 23(12): 1843-1846
DOI: 10.1055/s-0031-1290385
letter
© Georg Thieme Verlag Stuttgart · New York

Potent Oligomerization and Macrocyclization Activity of the Thioesterase Domain of Vicenistatin Polyketide Synthase

Fumitaka Kudo
a   Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
,
Yusaku Asou
a   Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
,
Moe Watanabe
a   Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
,
Takashi Kitayama
b   Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan, Fax: +81(3)57342631   Email: eguchi@cms.titech.ac.jp
,
Tadashi Eguchi*
b   Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan, Fax: +81(3)57342631   Email: eguchi@cms.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 01 February 2012

Accepted after revision: 27 April 2012

Publication Date:
21 June 2012 (online)


Abstract

The thioesterase domain of the polyketide synthase involved in the biosynthesis of the 20-membered macrolactam antibiotic vicenistatin (VinTE) was found to catalyze oligomerization and macrocyclization of ω-hydroxy fatty acid ethyl esters to afford 17–28-membered macrocyclic lactones. The ring sizes of the macrocycles appear to be limited to the more moderate sizes because of the space limitation of the active site of VinTE. It was also verified that the initially formed linear dimer is first released from the active site of VinTE and then is recognized again by VinTE prior to its transformation to the cyclic dimer.

Supporting Information