Synlett 2012; 23(17): 2497-2500
DOI: 10.1055/s-0031-1290464
letter
© Georg Thieme Verlag Stuttgart · New York

Access to Ynamides via CuO-Mediated Oxidative Amidation of Alkynes

Xiaogang Tong
a   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan 650201, P. R. of China   Fax: +86(871)5223354   Email: xiachengfeng@mail.kib.ac.cn
b   Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Guanghui Ni
a   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan 650201, P. R. of China   Fax: +86(871)5223354   Email: xiachengfeng@mail.kib.ac.cn
b   Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Xu Deng
a   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan 650201, P. R. of China   Fax: +86(871)5223354   Email: xiachengfeng@mail.kib.ac.cn
,
Chengfeng Xia*
a   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan 650201, P. R. of China   Fax: +86(871)5223354   Email: xiachengfeng@mail.kib.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 31 July 2012

Accepted after revision: 23 August 2012

Publication Date:
21 September 2012 (online)


Abstract

Copper(II) oxide mediated the direct coupling of terminal alkynes and amides by way of C–H functionalization to afford ynamides as useful building blocks. Some alkali halides such as KCl were discovered to play a key role as additive in the coupling reaction, while other salts could suppress the formation of products.

Supporting Information

 
  • References and Notes

  • 1 De Korver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
  • 2 Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
  • 3 Janousek Z, Viehe HG, Collard J. Angew. Chem., Int. Ed. Engl. 1972; 11: 917
  • 4 Zhang Y. Tetrahedron Lett. 2005; 46: 6483
  • 5 Chechik-Lankin H, Livshin S, Marek I. Synlett 2005; 2098
  • 6 Tanaka T, Hirano S, Urabe H, Sato F. Org. Lett. 2003; 5: 67
  • 7 Al-Rashid ZF, Johnson WL, Hsung RP, Wei YG, Yao PY, Liu RH, Zhao K. J. Org. Chem. 2008; 73: 8780
  • 8 Riddell N, Villeneuve K, Tam W. Org. Lett. 2005; 7: 3681
  • 9 Huang J, Xiong H, Hsung RP, Rameshkumar C, Mulder JA, Grebe TP. Org. Lett. 2002; 4: 2417
  • 10 Couty S, Meyer C, Cossy J. Angew. Chem. Int. Ed. 2006; 45: 6726
  • 11 Rodriguez D, Castedo L, Saa C. Synlett 2004; 377
  • 12 Zhang YS, Hsung RP, Zhang XJ, Huang J, Slafer BW, Davis A. Org. Lett. 2005; 7: 1047
  • 13 Couty S, Liegault B, Meyer C, Cossy J. Tetrahedron 2006; 62: 3882
  • 14 Couty S, Meyer C, Cossy J. Tetrahedron Lett. 2006; 47: 767
  • 15 Alayrac C, Schollmeyer D, Witulski B. Chem. Commun. 2009; 12: 1464
  • 16 Zificsak CA, Mulder JA, Hsung RP, Rameshkumar C, Wei LL. Tetrahedron 2001; 57: 7575
  • 17 Frederick MO, Mulder JA, Tracey MR, Hsung RP, Huang J, Kurtz KC. M, Shen LC, Douglas CJ. J. Am. Chem. Soc. 2003; 125: 2368
  • 18 Dunetz JR, Danheiser RL. Org. Lett. 2003; 5: 4011
  • 19 Dooleweerdt K, Birkedal H, Ruhland T, Skrydstrup T. J. Org. Chem. 2008; 73: 9447
  • 20 Fukudome Y, Naito H, Hata T, Urabe H. J. Am. Chem. Soc. 2008; 130: 1820
  • 21 Laroche C, Li J, Freyer MW, Kerwin SM. J. Org. Chem. 2008; 73: 6462
  • 22 Coste A, Karthikeyan G, Couty F, Evano G. Angew. Chem. Int. Ed. 2009; 48: 4381
  • 23 Jia W, Jiao N. Org. Lett. 2010; 12: 2000
  • 24 Hamada T, Ye X, Stahl SS. J. Am. Chem. Soc. 2008; 130: 833
  • 25 General Procedures for the Synthesis of Ynamides In a dry 25 mL round-bottom flask, CuO (1.93 mmol), KCl (0.154 mmol), 4-PPY (0.154 mmol), and the 2-oxazolidinone (3.85 mmol) were added to dry toluene (5 mL) under argon. The flask was placed in an oil bath, and 4-ethynylanisole (0.77 mmol) was added. Then, the reaction mixture was stirred for 36 h at 80 °C. After the crude mixture was filtered and concentrated under vacuum, the mixture was separated on a silica gel column using hexanes–EtOAc (2:1) as eluent to afford the ynamide. Analytical Data of Selected Compounds
    Ynamide 7
    27a Colorless acicular crystal. 1H NMR (500 MHz, CDCl3): δ = 7.42 (d, J = 9.1 Hz, 2 H), 7.35–7.28 (m, 3 H), 7.24–7.23 (m, 2 H), 6.85 (d, J = 9.1 Hz, 2 H), 4.33 (m, 2 H), 4.14 (m, 1 H), 3.80 (s, 3 H), 3.25 (dd, J = 14.0, 3.5 Hz, 1 H), 3.00 (m, 1 H); [α]D 18 +82.1 (c 3.01, CHCl3); known compound. Ynamide 8 Colorless acicular crystal. 1H NMR (500 MHz, CDCl3): δ = 7.39 (d, J = 8.8 Hz, 2 H), 6.83 (d, J = 8.8 Hz, 2 H), 4.42 (t, J = 8.8 Hz, 1 H), 4.19 (d, J = 8.8, 6.0 Hz, 1 H), 4.03 (m, 1 H), 3.81 (s, 3 H), 2.29 (m, 1 H), 1.03 (d, J = 6.6 Hz, 3 H), 1.02 (d, J = 6.6 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 159.6, 156.1, 133.4, 114.3, 113.9, 77.0, 71.9, 64.8, 62.1, 55.3, 29.2, 17.2, 15.2. ESI-HRMS: m/z calcd [M + H]+ = 260.1286; found: 260.1281; [α]D 18 +28.2 (c 2.57, CHCl3). Ynamide 9 27b Colorless acicular crystal. 1H NMR (500 MHz, CDCl3): δ = 7.39–7.29 (m, 5 H), 7.12 (d, J = 8.7 Hz, 2 H), 6.66 (d, J = 8.7 Hz, 2 H), 5.05–5.01 (m, 1 H), 4.70–4.66 (m, 1 H), 4.20 (dd, J = 9.0, 7.2 Hz, 1 H), 3.67 (m, 3 H); [α]D 18 +154.9 (c 1.36, CHCl3); known compound.
  • 26 Yao B, Liang Z, Niu T, Zhang Y. J. Org. Chem. 2009; 74: 4630