Synlett 2012; 23(9): 1300-1304
DOI: 10.1055/s-0031-1291005
new tools in synthesis
© Georg Thieme Verlag Stuttgart · New York

Biomimetic in situ Regeneration of Cofactors NAD(P)+ and NAD(P)H Models Hantzsch Esters and Dihydrophenanthridine

Wangming Du
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. of China, Fax: +86(411)84379227   Email: zkyu@dicp.ac.cn
,
Zhengkun Yu*
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. of China, Fax: +86(411)84379227   Email: zkyu@dicp.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 20 February 2012

Accepted after revision: 20 March 2012

Publication Date:
14 May 2012 (online)


Abstract

Biomimetic recycling of the expensive cofactors NAD(P)H/NAD(P)+ and their models is a promising area in bio-inspired synthesis. This paper highlights the recent advances in the in situ regeneration of the oxidized cofactors NAD(P)+ through oxidation of cofactors NAD(P)H in the presence of an alcohol dehydrogenase by means of dioxygen and a synthetic Fe(III) porphyrin as a biomimetic NAD(P)H oxidase or flavin as catalyst, and biomimetic in situ regeneration of the expensive NAD(P)H models Hantzsch esters (HEH) and 9,10-dihydrophenanthridine (DHPD) by transition-metal and chiral Brønsted acid catalyzed relay asymmetric hydrogenation.

1. Introduction

2. Biomimetic in situ Regeneration of NAD(P)+

3. Biomimetic in situ Regeneration of Hantzsch Esters (HEH)

4. Biomimetic in situ Regeneration of Dihydrophenanthridine (DHPD)

5. Future Perspective

 
  • References

  • 1 Frey PA, Hegeman AD. Enzymatic Reaction Mechanisms . Oxford University Press; New York: 2007
  • 2 Hantzsch A. Ber. Dtsch. Chem. Ges. 1881; 14: 1637
  • 3 Hanztsch A. Justus Liebigs Ann. Chem. 1882; 215: 1
  • 4 Woodyer R, Zhao HM, van der Donk WA. FEBS J. 2005; 272: 3816
  • 5 De Vries JG, Mršić N. Catal. Sci. Technol. 2011; 1: 727
  • 6 Chen Q.-A, Wang D.-S, Zhou Y.-G, Duan Y, Fan H.-J, Yang Y, Zhang Z. J. Am. Chem. Soc. 2011; 133: 6126
  • 7 Pelletier G, Bechara WS, Charette A. J. Am. Chem. Soc. 2010; 132: 12817
  • 8 Martin NJ. A, Ozores L, List B. J. Am. Chem. Soc. 2007; 129: 8976
  • 9 Li G, Liang Y, Antilla JC. J. Am. Chem. Soc. 2007; 129: 5830
  • 10 Hoffmann S, Nicoletti M, List B. J. Am. Chem. Soc. 2006; 128: 13074
  • 11 Tuttle JB, Ouellet SG, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 12662
  • 12 Ouellet SG, Tuttle JB, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 32
  • 13 Hall M, Bommarius AS. Chem. Rev. 2011; 111: 4088
  • 14 Rueping M, Sugiono E, Schoepke FR. Synlett 2010; 852
  • 15 You S.-L. Chem.–Asian. J. 2007; 2: 820
  • 16 Ouellet SG, Walji AM, MacMillan DW. C. Acc. Chem. Res. 2007; 40: 1327
  • 17 Weckbecker A, Gröger H, Hummel W. Adv. Biochem. Eng./Biotechnol. 2010; 120: 195
  • 18 Schroer K, Luef KP, Hartner FS, Glieder A, Pscheidt B. Metabol. Eng. 2010; 12: 8
  • 19 Zhao HM. ACS Catal. 2011; 1: 1119
  • 20 Wischang D, Brücher O, Hartung J. Coord. Chem. Rev. 2011; 255: 2204
  • 21 Pan YH, Tan CH. Synthesis 2011; 2044
  • 22 Schröder K, Join B, Amali AJ, Junge K, Ribas X, Costas M, Beller M. Angew. Chem. Int. Ed. 2011; 50: 1425
  • 23 Xiao X, Xie Y, Su CX, Liu M, Shi YA. J. Am. Chem. Soc. 2011; 133: 12914
  • 24 Sugano Y, Vestergaard MC, Saito M, Tamiya E. Chem. Commun. 2011; 7176
  • 25 Bhoware SS, Kim KY, Kim JA, Wu Q, Kim J. J. Phys. Chem. C 2011; 115: 2553
  • 26 Gargiulo S, Arends IW. C. E, Hollmann F. ChemCatChem 2011; 3: 338
  • 27 Haquette P, Talbi B, Barilleau L, Madern N, Fosse C, Salmain M. Org. Biomol. Chem. 2011; 9: 5720
  • 28 Sambongi Y, Nitta H, Ichihashi K, Futai M, Ueda I. J. Org. Chem. 2002; 67: 3499
  • 29 Hummel W, Kuzu M, Geueke B. Org. Lett. 2003; 5: 3649
  • 30 Pival SL, Klimacek M, Nidetzky B. Adv. Synth. Catal. 2008; 350: 2305
  • 31 Lee HJ, Lee SH, Park CB, Won K. Chem. Commun. 2011; 47: 12538
  • 32 Hilt G, Lewall B, Montero G, Utley JH. P, Steckhan E. Liebigs Ann./Recl. 1997; 2289
  • 33 Wakchaure VN, Zhou J, Hoffmann S, List B. Angew. Chem. Int. Ed. 2010; 49: 4612
  • 34 Maid H, Böhn P, Huber SM, Bauer W, Hummel W, Jux N, Gröger H. Angew. Chem. Int. Ed. 2011; 50: 2397
  • 35 Chen Q.-A, Chen M.-W, Yu C.-B, Shi L, Wang D.-S, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2011; 133: 16432
  • 36 Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
  • 37 Kuwano R. Heterocycles 2008; 76: 909
  • 38 Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
  • 39 Tang WJ, Zhang XM. Chem. Rev. 2003; 103: 3029
  • 40 Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 6751
  • 41 Chen Q.-A, Gao K, Duan Y, Ye Z.-S, Shi L, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2012; 134: 2442