Subscribe to RSS
DOI: 10.1055/s-0031-1299260
Die Laser-Scanning-Tomographie in der Glaukomsprechstunde
Laser-Scanning-Tomography in Clinical RoutinePublication History
21 November 2011
19 January 2012
Publication Date:
14 February 2012 (online)
Zusammenfassung
Die Laser-Scanning-Tomografie mit dem Heidelberg Retina Tomograph HRT dient der quantitativen Analyse des Sehnervenkopfes. Die dreidimensionale Strukturrekonstruktion erfolgt aus einer tiefengeschichteten Serie zweidimensionaler optischer Schnittbilder. Die Papillentopografie wird über topometrische Parameter erfasst, anhand mathematischer Modellrechnungen wird die Abschätzung der Wahrscheinlichkeit eines Glaukomschadens ermittelt. Im klinischen Alltag hat sich aus Praktikabilitätsgründen dieses Bildgebungsverfahren als Goldstandard in der Verlaufskontrolle einer glaukomatösen Papillenschädigung etabliert.
Abstract
Scanning laser tomography using the Heidelberg Retina Tomograph (HRT) aims at a three-dimensional reconstruction of optic disk topography based on two-dimensional optical section images. Topometric parameters describe the optic disk configuration, algorithms calculate the likelihood of already existing glaucomatous tissue alterations. In the follow-up of chronic glaucoma, this imaging technique has become the gold standard for quantitative optic nerve head evaluation.
-
Literatur
- 1 EGS. Terminology and guidelines for glaucoma. 3rd. Edition Editrice DOGMA s. r.l; ISBN: 978-88-87434-28-6
- 2 Jonas JB, Gusek GC, Naumann GOH. Optic disc morphometry in chronic primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 1988; 226: 531-538
- 3 Zinser G, Wijnaendts-van-Resandt RW et al. Confocal laser tomographic scanning of the eye. Proc SPIE 1989; 1161: 337-344
- 4 Burk ROW. Dreidimensionale topographische Analyse des Sehnerven als Bestandteil der Glaukomdiagnose. Ophthalmologe 1992; 89: 190-203
- 5 Kamal DS, Viswanathan AC, Garway-Heath DF et al. Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma. Br J Ophthalmol 1999; 83: 290-294
- 6 Mardin CY, Horn FK, Jonas JB et al. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthalmol 1999; 83: 299-304
- 7 Burk ROW, Rohrschneider K, Takamoto T et al. Laser scanning tomography and stereophotogrammetry in three-dimensional optic disc analysis . Graefes Arch Clin Exp Ophthalmol 1993; 231: 193-198
- 8 Bartz-Schmidt KU, Weber J, Heimann K. Validity of two dimensional data obtained with the Heidelberg retina tomograph as verified by direct measurements in normal optic nerve heads. Ger J Ophthalmol 1994; 3: 400-405
- 9 Burk R, Tuulonen A, Airaksinen PJ. Laser scanning tomography of localised nerve fibre layer defects. Brit J Ophthalmol 1998; 82: 1112-1117
- 10 Burk ROW, Rohrschneider K, Noack H et al. Volumetrische Analyse der Papille mittels Laser Scanning Tomographie. Parameterdefinition und Vergleich von Glaukom und Kontrollpapillen. Klin Monbl Augenheilkd 1991; 198: 522-529
- 11 Hermann MM, Garway-Heath DF, Jonescu-Cuypers CP et al. Interobserver variability in confocal optic nerve analysis (HRT). Int Ophthalmol 2005; 26: 143-149
- 12 Burk RO, Vihanninjoki K, Bartke T et al. Development of the standard reference plane for the Heidelberg retina tomograph. Graefes Arch Clin Exp Ophthalmol 2000; 238: 375-384
- 13 Mikelberg FS, Parfitt CM, Swindale NV et al. Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss. J Glaucoma 1995; 4: 242-247
- 14 Vihanninjoki K, Teesalu P, Burk RO et al. Search for an optimal combination of structural and functional parameters for the diagnosis of glaucoma. Multivariate analysis of confocal scanning laser tomography, blue-on-yellow visual field and retinal nerve fiber layer data. Graefes Arch Clin Exp Ophthalmol 2000; 238: 477-481
- 15 Burk ROW, Noack H, Rohrschneider K et al. Prediction of glaucomatous visual field defects by reference plane independent three-dimensional optic nerve head parameters. In: Wall M, Wild JM, (eds.) Perimetry update 1998/1999: Proceedings of the XIII International Perimetric Society Meeting. Walter Kugler, The Hague; 1999: 463-474
- 16 Bathija R, Zangwill L, Berry CC et al. Detection of early glaucomatous structural damage with confocal scanning laser tomography. J Glaucoma 1998; 7: 121-127
- 17 Burk RO, König J, Rohrschneider K et al. 3-dimensionale Papillentopographie mittels Laser Scanning Tomographie: klinische Korrelation einer Clusteranalyse. Klin Monbl Augenheilkd 1994; 204: 504-512
- 18 Rudnicka AR, Burk RO, Edgar DF et al. Magnification characteristics of fundus imaging systems. Ophthalmology 1998; 105: 2186-2192
- 19 Kruse FE, Burk RO, Völcker HE et al. Reproducibility of topographic measurements of the optic nerve head with laser tomographic scanning. Ophthalmology 1989; 96: 1320-1324
- 20 Rohrschneider K, Burk RO, Völcker HE. Reproducibility of topographic data acquisition in normal and glaucomatous optic nerve heads with the laser tomographic scanner. Graefes Arch Clin Exp Ophthalmol 1993; 231: 457-464
- 21 Rohrschneider K, Burk RO, Kruse FE et al. Reproducibility of the optic nerve head topography with a new laser tomographic scanning device. Ophthalmology 1994; 101: 1044-1049
- 22 Chauhan BC, LeBlanc RP, McCormick TA et al. Test-retest variability of topographic measurements with confocal scanning laser tomography in patients with glaucoma and control subjects. Am J Ophthalmol 1994; 118: 9-15
- 23 Brigatti L, Weitzman M, Caprioli J. Regional test-retest variability of confocal scanning laser tomography. Am J Ophthalmol 1995; 120: 433-440
- 24 Nicolela MT, Soares AS, Carrillo MM et al. Effect of Moderate Intraocular Pressure Changes on Topographic Measurements With Confocal Scanning Laser Tomography in Patients With Glaucoma. Arch Ophthalmol 2006; 124: 633-640
- 25 Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998; 105: 1557-1563
- 26 Swindale NV, Stjepanovic G et al. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 2000; 41: 1730-1742
- 27 Chauhan BC, Blanchard JW, Hamilton DC et al. Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci 2000; 41: 775-782
- 28 Chauhan BC, McCormick TA, Nicolela MT et al. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 2001; 119: 1492-1499
- 29 Zangwill LM, Weinreb RN, Beiser JA et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123: 1188-1197
- 30 Parrish RK 2nd, Schiffman JC, Feuer WJ et al. Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol 2005; 140: 762-764
- 31 Altangerel U, Bayer A, Henderer JD et al. Knowledge of chronology of optic disc stereophotographs influences the determination of glaucomatous change. Ophthalmology 2005; 112: 40-43
- 32 Jampel HD, Friedman D, Quigley H et al. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am J Ophthalmol 2009; 147: 39-44
- 33 Kourkoutas D, Buys YM, Flanagan JG et al. Comparison of glaucoma progression evaluated with Heidelberg retina tomograph II versus optic nerve head stereophotographs. Can J Ophthalmol 2007; 42: 82-88
- 34 O’Leary N, Crabb DP, Mansberger SL et al. Glaucomatous Progression in Series of Stereoscopic Photographs and Heidelberg Retina Tomograph Images. Arch Ophthalmol 2010; 128: 560-568