Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(18): 2707-2713
DOI: 10.1055/s-0032-1317349
DOI: 10.1055/s-0032-1317349
letter
Reusable Visible Light Photoredox Catalysts; Catalyzed Benzylic C(sp3)–H Functionalization/Carbocyclization Reactions
Further Information
Publication History
Received: 09 August 2012
Accepted after revision: 11 September 2012
Publication Date:
18 October 2012 (online)
Abstract
The C(sp3)–H functionalization/carbocyclization reaction through the oxidative quenching of visible light photoredox catalysts is established for constructing functionalized 1H-indenes. The process is general for a wide range of benzylic C(sp3)–H bonds and is highly compatible with common functional groups. Importantly, the visible light photoredox catalysts can be recovered and reused at least three times without loss of catalytic activity.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References
- 1a Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
- 1b Yoon TP, Ischay MA, Du J. Nature Chem. 2010; 2: 527
- 1c Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 1d Teplý F. Collect. Czech. Chem. Commun. 2011; 76: 859
- 1e Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
- 2a Condie AG, González-Gómez J, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
- 2b Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
- 2c Zou Y.-Q, Lu L.-Q, Fu L, Chang N.-J, Rong J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2011; 50: 7171
- 2d Xuan J, Cheng Y, An J, Lu L.-Q, Zhang X.-X, Xiao W.-J. Chem. Commun. 2011; 47: 8337
- 2e Xie Z, Wang C, de Krafft KE, Lin W. J. Am. Chem. Soc. 2011; 133: 2056
- 2f Zhu M, Zheng N. Synthesis 2011; 2223
- 2g Rueping M, Leonori D, Poisson T. Chem. Commun. 2011; 47: 9615
- 2h Hari DP, König B. Org. Lett. 2011; 13: 3852
- 2i Rueping M, Zhu S, Koenigs RM. Chem. Commun. 2011; 47: 8679
- 2j Rueping M, Zoller J, Fabry DC, Poscharny K, Koenigs RM, Weirich TE. Chem.–Eur. J. 2012; 18: 3478
- 2k Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
- 3a For p-methoxybenzyl (PMB) ethers, see: Tucker JW, Narayanam JM. R, Shah PS, Stephenson CR. J. Chem. Commun. 2011; 47: 5040
- 3b For dialkylamides, see: Dai C, Meschini F, Narayanam JM. R, Stephenson CR. J. J. Org. Chem. 2012; 77: 4425
- 4a Pham PV, Nagib DA, MacMillan DW. C. Angew. Chem. Int. Ed. 2011; 50: 6119
- 4b McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
- 4c Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
- 4d Lu Z, Shen M, Yoon TP. J. Am. Chem. Soc. 2011; 133: 1162
- 4e Hurtley AE, Cismesia MA, Ischay MA, Yoon TP. Tetrahedron 2011; 67: 4442
- 4f Du J, Ruiz Espelt L, Guzei IA, Yoon TP. Chem. Sci. 2011; 2: 2115
- 4g Lin S, Ischay MA, Fry CG, Yoon TP. J. Am. Chem. Soc. 2011; 133: 19350
- 4h Zou Y.-Q, Chen J.-R, Liu X.-P, Lu L.-Q, Davis RL, Jørgensen KA, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
- 4i Dai C, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2011; 3: 140
- 4j Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 3160
- 4k Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
- 4l Maity S, Zhu M, Shinabery RS, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 222
- 5a Giri R, Shi B.-F, Engle KM, Maugel N, Yu JQ. Chem. Soc. Rev. 2009; 38: 3242
- 5b Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 5c Yoo W.-J, Li C.-J. Top. Curr. Chem. 2010; 292: 281
- 5d Wasa M, Engle KM, Yu J.-Q. Isr. J. Chem. 2010; 50: 605
- 5e Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 5f Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
- 5g Zhang S.-Y, Zhang F.-M, Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
- 5h Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2006; 45: 1683
- 5i Campos KR. Chem. Soc. Rev. 2007; 36: 1069
- 5j Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem.–Eur. J. 2010; 16: 2654
- 5k Li H, Li B.-J, Shi Z.-J. Catal. Sci. Tech. 2011; 1: 191
- 5l Ramirez TA, Zhao B, Shi Y. Chem. Soc. Rev. 2012; 41: 931
- 6a Bajracharya GB, Pahadi NK, Gridnev ID, Yamatoto Y. J. Org. Chem. 2006; 71: 6204
- 6b Yang S, Li Z, Jian X, He C. Angew. Chem. Int. Ed. 2009; 48: 3999
- 6c Tobisu M, Nakai H, Chatani N. J. Org. Chem. 2009; 74: 5471
- 6d For Ru, see: Datta S, Odedra A, Liu R.-S. J. Am. Chem. Soc. 2005; 127: 11606
- 6e Odedra A, Datta S, Liu R.-S. J. Org. Chem. 2007; 72: 3289
- 6f For Rh, see: Shikanai D, Murase H, Hata T, Urabe H. J. Am. Chem. Soc. 2009; 131: 3166
- 6g For Pd, see: Zhao S.-C, Shu X.-Z, Ji K.-G, Zhou A.-X, He T, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2011; 76: 1941
- 6h For Cu, see: Zeng X, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 17638
- 6i For Au, see: Bhunia S, Ghorpade S, Huple DB, Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 2939
- 7a Morrison RT, Boyd RN. Organic Chemistry . 5th ed. Allyn and Bacon; Boston: 1987
- 7b Dubbaka SR, Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
- 7c Kasahara A, Izumi T, Kudou N, Azami H, Yamamoto S. Chem. Ind. (London) 1988; 51
- 7d Miura M, Hashimoto H, Itoh K, Nomura M. Tetrahedron Lett. 1989; 30: 975
- 7e Dubbaka SR, Vogel P. J. Am. Chem. Soc. 2003; 125: 15292
- 7f Dubbaka SR, Vogel P. Tetrahedron Lett. 2006; 47: 3345
- 7g Volla CM. R, Vogel P. Angew. Chem. Int. Ed. 2008; 47: 1305
- 7h Volla CM. R, Dubbaka SR, Vogel P. Tetrahedron 2009; 65: 504
- 7i Chen J, Sun Y, Liu B, Liu D, Cheng J. Chem. Commun. 2012; 48: 449
- 8a Lopes LM. X, Yoshida M, Gottlieb OR. Phytochemistry 1984; 23: 2021
- 8b Nagle DG, Zhou Y.-D, Park PU, Paul VJ, Rajbhandari I, Duncan CJ. G, Pasco DS. J. Nat. Prod. 2000; 63: 1431
- 8c Sugimoto H, Iimura Y, Yamanishi Y, Yamatsu K. J. Med. Chem. 1995; 38: 4821
- 8d Dolling U.-H, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
- 8e deSolms SJ, Woltersdorf OW. Jr, Cragoe EJ. Jr, Watson LS, Fanelli GM. Jr. J. Med. Chem. 1978; 21: 437
- 8f Park CH, Siomboing X, Yous S, Gressier B, Luyckx M, Chavatte P. Eur. J. Med. Chem. 2002; 37: 461
- 8g Anstead GM, Wilson SR, Katzenellenbogen JA. J. Med. Chem. 1989; 32: 2163
- 8h Hajela K, Kapil RS. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1995; 34: 361
- 8i Alcalde E, Mesquida N, López-Pérez S, Frigola J, Mercè R. J. Med. Chem. 2009; 52: 675
- 8j Ito T, Tanaka T, Iinuma M, Nakaya K, Takahashi Y, Sawa R, Murata J, Darnaedi D. J. Nat. Prod. 2004; 67: 932
- 9 Typical Experimental Procedure for the Arylative Cyclization of ortho-Alkyl Arylalkynes with Arylsulfonyl Chlorides: To a Schlenk tube were added ortho-alkyl arylalkyne 1 (0.2 mmol), arylsulfonyl chloride 2 (3 equiv), [Ru(bpy)3Cl2] or [Ir(ppy)3] (3 mol%), Na2CO3 (2.5 equiv), and anhydrous MeCN (1 mL). The tube was charged with argon and stirred at 45 °C under irradiation with a 36 W compact fluorescent light for the indicated time (36 h) until complete consumption of starting material (reaction monitored by TLC and GC–MS analysis). When the reaction was finished, the mixture was diluted in diethyl ether, filtered through a short crude silica gel column and concentrated under vacuum. The resulting residue was purified by silica gel column chromatography (hexane–ethyl acetate) to afford the desired product. 1,1-Dimethyl-3-(4-nitrophenyl)-2-phenyl-1H-indene (3): Yield: 55.7 mg (83%); yellow solid; mp 128.7–129.5 °C (uncorrected); 1H NMR (500 MHz, CDCl3): δ = 8.12 (d, J = 8.5 Hz, 2 H), 7.47–7.43 (m, 3 H), 7.32–7.29 (m, 6 H), 7.13–7.11 (m, 2 H), 1.42 (s, 6 H); 13C NMR (125 MHz, CDCl3): δ = 156.0, 153.0, 146.6, 142.3, 141.4, 136.1, 135.7, 130.2, 129.5, 128.3, 127.5, 126.8, 126.0, 123.4, 121.9, 120.2, 51.9, 24.3; MS (EI, 70 eV): m/z (%) = 341 (100) [M]+, 326 (46), 279 (15), 132 (8); HRMS (EI): m/z [M]+ calcd for C23H19NO2: 341.1415; found: 341.1411.
- 10a Masamune S, Sakai M, Morio K. Can. J. Chem. 1975; 53: 784
- 10b Hanack M. Acc. Chem. Res. 1976; 9: 364
- 10c Dicoordinated Carbocations . Rappoport Z, Stang PJ. John Wiley & Sons; Chichester: 1997
- 10d Okuyama T. Acc. Chem. Res. 2002; 35: 12
- 10e Okuyama T, Lodder G In Advances in Physical Organic Chemistry . Tidwell TT, Richard JP. Elsevier; Amsterdam: 2002: 1-56
For reviews, see:
For papers on C(sp3)–H functionalization using visible-light photoredox catalysis via a reductive quenching cycle, see:
For papers on C(sp3)–H functionalization using visible light photoredox catalysis via an oxidative quenching cycle, see:
For representative papers on other visible light photocatalysis, see:
For selected reviews on C(sp3)–H bond functionalization, see:
For Pt, see:
For representative reviews and papers on the use of arylsulfonyl chlorides as aryl group resources, see: