Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(4): 514-518
DOI: 10.1055/s-0032-1318109
DOI: 10.1055/s-0032-1318109
letter
Synthesis of (–)-Hennoxazole A: Integrating Batch and Flow Chemistry Methods
Further Information
Publication History
Received: 11 December 2012
Accepted: 30 December 2012
Publication Date:
30 January 2013 (online)
Abstract
A new total synthesis of (–)-hennoxazole A is reported. The synthetic approach is based on the preparation of three similarly sized fragments resulting in a fast and convergent assembly of the natural product. The three key reactions of the synthesis include a highly stereoselective 1,5-anti aldol coupling, a gold-catalyzed alkoxycyclization reaction, and a stereocontrolled diene cross-metathesis. The synthesis involves integrated batch and flow chemistry methods leading to the natural product in 16 steps longest linear sequence and 2.8% overall yield.
Key words
flow chemistry - polymer-supported reagents - metathesis - total synthesis - natural productsSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 Ichiba T, Yoshida WY, Scheuer PJ, Higa T, Gravalos DG. J. Am. Chem. Soc. 1991; 113: 3173
- 2a Wipf P, Lim S. J. Am. Chem. Soc. 1995; 117: 558
- 2b Williams DR, Brooks DA, Berliner MA. J. Am. Chem. Soc. 1999; 121: 4924
- 2c Yokokawa F, Asano T, Shioiri T. Tetrahedron 2001; 57: 6311
- 2d Smith TE, Kuo W.-H, Bock VD, Roizen JL, Balskus EP, Theberge AB. Org. Lett. 2007; 9: 1153
- 2e Smith TE, Kuo W.-H, Balskus EP, Bock VD, Roizen JL, Theberge AB, Carroll KA, Kurihara T, Wessler JD. J. Org. Chem. 2008; 73: 142
- 3a Bull JA, Balskus EP, Horan RA. J, Langner M, Ley SV. Chem. Eur. J. 2007; 13: 5515
- 3b Enriquez-Garcia A, Ley SV. Collect. Czech. Chem. Commun. 2009; 74: 887
- 4 Baumann M, Baxendale IR, Brasholz M, Hayward JJ, Ley SV, Nikbin N. Synlett 2010; 1375
- 5a Webb D, Jamison TF. Chem. Sci. 2010; 1: 675
- 5b Baumann M, Baxendale IR, Ley SV. Mol. Diversity 2011; 15: 613
- 6 Fürstner A, Kattnig E, Kelter G, Fiebig H.-H. Chem. Eur. J. 2009; 15: 4030
- 7a Reddy KK, Saady M, Falck JR, Whited G. J. Org. Chem. 1995; 60: 3385
- 7b Chavez DE, Jacobsen EN. Angew. Chem. Int. Ed. 2001; 40: 3667
- 8 Phillips AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165
- 9a Baumann M, Baxendale IR, Ley SV. Synlett 2008; 2111
- 9b Baumann M, Baxendale IR, Martin LJ, Ley SV. Tetrahedron 2009; 65: 6611
- 10a Carter CF, Lange H, Sakai D, Baxendale IR, Ley SV. Chem. Eur. J. 2011; 17: 3398
- 10b Webb D, Jamison TF. Org. Lett. 2012; 14: 568
- 11a Chen YK, Walsh PJ. J. Am. Chem. Soc. 2004; 124: 3702
- 11b Huang Z, Negishi E. J. Am. Chem. Soc. 2007; 129: 14788
- 12 Paterson I, Gibson RG, Oballa RM. Tetrahedron Lett. 1996; 37: 8585
- 13 Ricard L, Gagosz F. Organometallics 2007; 26: 4704
- 14 Data for Compound 2 Mp 74–79 °C. Rf = 0.34 (EtOAc–PE, 1:1); [α]D 29.4 –23 (c 0.13, CHCl3). IR (neat): 3464, 2984, 2932, 2837, 2365, 2337, 1639, 1615, 1578, 1512, 1449, 1380, 1362, 1302, 1247, 1171 cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.09 (1 H, s), 7.61 (1 H, s), 7.24 (2 H, d, J = 8.7 Hz), 6.86 (2 H, d, J = 8.7 Hz), 5.84 (1 H, ddt, J = 17.0, 10.3, 6.6 Hz), 5.08 (1 H, dq, J = 17.1, 1.6 Hz), 5.01 (1 H, dq, J = 10.2, 1.4 Hz), 4.97 (1 H, d, J = 9.7 Hz), 4.46 (2 H, d, J = 2.7 Hz), 4.18 (1 H, s), 3.94–3.83 (2 H, m), 3.79 (3 H, s), 3.21 (3 H, s), 2.93 (2 H, t, J = 7.6 Hz), 2.56 (2 H, q, J = 7.1 Hz), 2.26–2.19 (2 H, m), 2.03–2.00 (1 H, m), 1.90 (1 H, dt, J = 14.6, 10.2 Hz), 1.42–1.39 (1 H, m), 1.36 (3 H, s), 1.26 (1 H, q, J = 11.8 Hz). 13C NMR (125 MHz, CDCl3): δ = 165.5, 159.1, 155.3, 144.8, 137.8, 136.1, 134.1, 130.6, 129.7, 116.1, 113.8, 100.1, 70.8, 70.4, 69.7, 68.5, 55.2, 47.8, 42.1, 41.8, 37.7, 30.7, 27.5, 23.6. ESI-HRMS: m/z calcd for C27H34N2NaO7 + [M + Na]+: 521.2258; found: 521.2250.
- 15 An authentic sample of (–)-hennoxazole A was kindly provided by Prof. Thomas E. Smith (Williams College).
For some recent reviews on flow synthesis of heterocycles, see:
For some examples of selective reduction reactions using diisobutylaluminum hydride in flow, see: