Subscribe to RSS
DOI: 10.1055/s-0032-1318154
Guanidine Organocatalysis
Publication History
Received: 18 December 2012
Accepted after revision: 09 January 2013
Publication Date:
18 February 2013 (online)
Abstract
An overview of the most commonly used guanidine organocatalysts and their applications in organic synthesis is presented. Privileged structures of open, monocyclic and bicyclic guanidines and guanidinium salts are showcased with prominent examples from the literature. Free guanidines have found widespread use as strong Brønsted base catalysts in asymmetric synthesis. Guanidinium salts are employed as weak Brønsted acids or hydrogen-bond-donor catalysts and chiral counterions. The nucleophilic and Lewis basic properties of guanidines are still rarely exploited, but, as of late, have been gaining increasing recognition.
1 Introduction
2 Brønsted Base Catalysis
3 Hydrogen-Bond-Donor and Brønsted Acid Catalysis
4 Lewis Base Catalysis
5 Lewis Acid Catalysis
6 Conclusion
-
References
- 1 Strecker A. Liebigs Ann. Chem. 1861; 118: 151
- 2 Ishikawa T In Superbases for Organic Synthesis . Ishikawa T. John Wiley & Sons Ltd; Chichester: 2009: 93-143
- 3 Ullrich S, Nazir Z, Büsing A, Scheffer U, Wirth D, Bats JW, Dürner G, Göbel MW. ChemBioChem 2011; 12: 1223
- 4 Fan YC, Kwon O. In Asymmetric Organocatalysis 2012; 723-782
- 5a Coles MP. Chem. Commun. 2009; 3659
- 5b Leow D, Tan C.-H. Chem. Asian J. 2009; 4: 488
- 5c Terada M. J. Synth. Org. Chem. Jpn. 2010; 68: 1159
- 5d Ishikawa T. Chem. Pharm. Bull. 2010; 58: 1555
- 5e Leow D, Tan C.-H. Synlett 2010; 1589
- 6 Corey EJ, Ohtani M. Tetrahedron Lett. 1989; 30: 5227
- 7 Büchi G, Rodriguez AD, Yakushijin K. J. Org. Chem. 1989; 54: 4494
- 8 Khuong-Huu F, Le Forestier JP, Goutarel R. Tetrahedron 1972; 28: 5207
- 9 Corey EJ, Grogan MJ. Org. Lett. 1999; 1: 157
- 10 Ye W, Leow D, Goh SL. M, Tan C.-T, Chian C.-H, Tan C.-H. Tetrahedron Lett. 2006; 47: 1007
- 11 Hjelmencrantz A, Berg U. J. Org. Chem. 2002; 67: 3585
- 12 Jiang Z, Ye W, Yang Y, Tan C.-H. Adv. Synth. Catal. 2008; 350: 2345
- 13 Fu X, Jiang Z, Tan C.-H. Chem. Commun. 2007; 5058
- 14 Leow D, Lin S, Chittimalla SK, Fu X, Tan C.-H. Angew. Chem. Int. Ed. 2008; 47: 5641 ; Angew. Chem. 2008, 120, 5723
- 15 Liu H, Feng W, Kee CW, Leow D, Loh W.-T, Tan C.-H. Adv. Synth. Catal. 2010; 352: 3373
- 16 Shen J, Tan C.-H. Org. Biomol. Chem. 2008; 6: 4096
- 17 Zhao Y, Pan Y, Liu H, Yang Y, Jiang Z, Tan C.-H. Chem. Eur. J. 2011; 17: 3571
- 18 Pan Y, Kee CW, Jiang Z, Ma T, Zhao Y, Yang Y, Xue H, Tan C.-H. Chem. Eur. J. 2011; 17: 8363
- 19 Wang J, Chen J, Kee CW, Tan C.-H. Angew. Chem. Int. Ed. 2012; 51: 2382 ; Angew. Chem. 2012, 124, 2432
- 20 Terada M, Ube H, Yaguchi Y. J. Am. Chem. Soc. 2006; 128: 1454
- 21 Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 2003; 125: 5139
- 22 Terada M, Ikehara T, Ube H. J. Am. Chem. Soc. 2007; 129: 14112
- 23 Ube H, Shimada N, Terada M. Angew. Chem. Int. Ed. 2010; 49: 1858 ; Angew. Chem. 2010, 122, 1902
- 24 Terada M, Amagai K, Ando K, Kwon E, Ube H. Chem. Eur. J. 2011; 17: 9037
- 25 Terada M, Nakano M, Ube H. J. Am. Chem. Soc. 2006; 128: 16044
- 26 Nakano M, Terada M. Synlett 2009; 1670
- 27a Isobe T, Fukuda K, Ishikawa T. J. Org. Chem. 2000; 65: 7770
- 27b Isobe T, Fukuda K, Tokunaga T, Seki H, Yamaguchi K, Ishikawa T. J. Org. Chem. 2000; 65: 7774
- 27c Isobe T, Fukuda K, Yamaguchi K, Seki H, Tokunaga T, Ishikawa T. J. Org. Chem. 2000; 65: 7779
- 28 Isobe T, Fukuda K, Araki Y, Ishikawa T. Chem. Commun. 2001; 243
- 29 Saito N, Ryoda A, Nakanishi W, Kumamoto T, Ishikawa T. Eur. J. Org. Chem. 2008; 2759
- 30 Tokunou S, Nakanishi W, Kagawa N, Kumamoto T, Ishikawa T. Heterocycles 2012; 84: 1045
- 31 Yu Z, Liu X, Zhou L, Lin L, Feng X. Angew. Chem. Int. Ed. 2009; 48: 5195 ; Angew. Chem. 2009, 121, 5297
- 32 Dong S, Liu X, Chen X, Mei F, Zhang Y, Gao B, Lin L, Feng X. J. Am. Chem. Soc. 2010; 132: 10650
- 33 Dong S, Liu X, Zhang Y, Lin L, Feng X. Org. Lett. 2011; 13: 5060
- 34 Xiao X, Liu X, Dong S, Cai Y, Lin L, Feng X. Chem. Eur. J. 2012; 18: 15922
- 35 Yang Y, Dong S, Liu X, Lin L, Feng X. Chem. Commun. 2012; 48: 5040
- 36 Review: Sohtome Y, Nagasawa K. Chem. Commun. 2012; 48: 7777
- 37 Shubina TE, Freund M, Schenker S, Clark T, Tsogoeva SB. Beilstein J. Org. Chem. 2012; 8: 1485
- 38 Sohtome Y, Shin B, Horitsugi N, Takagi R, Noguchi K, Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 7299 ; Angew. Chem. 2010, 122, 7457
- 39 Sohtome Y, Yamaguchi T, Shin B, Nagasawa K. Chem. Lett. 2011; 40: 843
- 40 Sohtome Y, Tanaka S, Takada K, Yamaguchi T, Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 9254 ; Angew. Chem. 2010, 122, 9440
- 41 Sohtome Y, Horitsugi N, Takagi R, Nagasawa K. Adv. Synth. Catal. 2011; 353: 2631
- 42 Chinchilla R, Nájera C, Sánchez-Agulló P. Tetrahedron: Asymmetry 1994; 5: 1393
- 43 McManus JC, Carey JS, Taylor RJ. K. Synlett 2003; 365
- 44 Iyer MS, Gigstad KM, Namdev ND, Lipton M. J. Am. Chem. Soc. 1996; 118: 4910
- 45 Becker C, Hoben C, Schollmeyer D, Scherr G, Kunz H. Eur. J. Org. Chem. 2005; 1497
- 46a Uyeda C, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 9228
- 46b Uyeda C, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 5062
- 47a Echavarren A, Galán A, de Mendoza J, Salmerón A, Lehn J.-M. Helv. Chim. Acta 1988; 71: 685
- 47b Kurzmeier H, Schmidtchen FP. J. Org. Chem. 1990; 55: 3749
- 47c Jadhav VD, Schmidtchen FP. J. Org. Chem. 2008; 73: 1077
- 48 Kita T, Shin B, Hashimoto Y, Nagasawa K. Heterocycles 2007; 73: 241
- 49 Martínez-Castañeda A, Poladura B, Rodríguez-Solla H, Concellón C, del Amo V. Org. Lett. 2011; 13: 3032
- 50a Inokuma T, Furukawa M, Uno T, Suzuki Y, Yoshida K, Yano Y, Matsuzaki K, Takemoto Y. Chem. Eur. J. 2011; 17: 10470
- 50b Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 51a Fu X, Tan C.-H. Chem. Commun. 2011; 47: 8210
- 51b Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
- 52 Maji B, Stephenson DS, Mayr H. ChemCatChem 2012; 4: 993
- 53 Baidya M, Mayr H. Chem. Commun. 2008; 1792
- 54 Review: Li X, Jiang H, Uffman EW, Guo L, Zhang Y, Yang X, Birman VB. J. Org. Chem. 2012; 77: 1722
- 55 Mechanism of MBH reaction: Cantillo D, Kappe CO. J. Org. Chem. 2010; 75: 8615
- 56a Leadbeater NE, van der Pol C. J. Chem. Soc., Perkin Trans. 1 2001; 2831
- 56b Grainger RS, Leadbeater NE, Masdéu PàmiesA. Catal. Commun. 2002; 3: 449
- 57 Ghobril C, Sabot C, Mioskowski C, Baati R. Eur. J. Org. Chem. 2008; 4104
- 58 Della Ca’ N, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M. Adv. Synth. Catal. 2011; 353: 133
- 59a Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartorio R. Tetrahedron Lett. 2003; 44: 2931
- 59b Wang C, Luo H, Jiang D.-e, Li H, Dai S. Angew. Chem. Int. Ed. 2010; 49: 5978 ; Angew. Chem. 2010, 122, 6114
- 60 Kiesewetter MK, Scholten MD, Kirn N, Weber RL, Hedrick JL, Waymouth RM. J. Org. Chem. 2009; 74: 9490
- 61a Ciobanu O, Roquette P, Leingang S, Wadepohl H, Mautz J, Himmel H.-J. Eur. J. Inorg. Chem. 2007; 4530
- 61b Schulenberg N, Jäkel M, Kaifer E, Himmel H.-J. Eur. J. Inorg. Chem. 2009; 4809
- 61c Ciobanu O, Himmel H.-J. Eur. J. Inorg. Chem. 2007; 3565
- 62 Selig P, Turočkin A, Raven W. Adv. Synth. Catal. 2013; 335: 297
- 63a Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
- 63b Saunders LB, Miller SJ. ACS Catal. 2011; 1: 1347
- 64 Zhu X.-F, Henry CE, Wang J, Dudding T, Kwon O. Org. Lett. 2005; 7: 1387
- 65a Misaki T, Takimoto G, Sugimura T. J. Am. Chem. Soc. 2010; 132: 6286
- 65b Misaki T, Kawano K, Sugimura T. J. Am. Chem. Soc. 2011; 133: 5695
- 66 Avila A, Chinchilla R, Nájera C. Tetrahedron: Asymmetry 2012; 23: 1625
- 67 For an overview, see: Wong OA, Ramirez TA, Shi Y, García-García P. In Asymmetric Organocatalysis . List B. Georg Thieme Verlag KG; Stuttgart: 2012: 783-866
For selected recent reviews by other research groups, see: