Synlett, Table of Contents Synlett 2013; 24(4): 443-448DOI: 10.1055/s-0032-1318188 letter © Georg Thieme Verlag Stuttgart · New York Cu(OAc)2-Catalyzed Thiolation of Acyl C–H Bonds with Thiols Using TBHP as an Oxidant Yan-qin Yuan* a Department of Chemistry, Lishui University, 323000 Lishui, P. R. of China, Email: guosr9609@lsu.edu.cn , Sheng-rong Guo a Department of Chemistry, Lishui University, 323000 Lishui, P. R. of China, Email: guosr9609@lsu.edu.cn b College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China Email: jnxiang@hnu.edu.cn , Jian-nan Xiang* b College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China Email: jnxiang@hnu.edu.cn › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract Cu(OAc)2-promoted TBHP oxidative coupling reaction of formamides with thiols successfully proceeded through direct C–H bond activation of formamides. The corresponding S-phenyl dialkyl thiocarbamate compounds were formed with high yield under solvent-free conditions. Key words Key wordsTBHP - Cu(OAc)2 - thiolation - thiols - formamide Full Text References References and Notes 1a Bichler P, Jennifer AL. Top. Organomet. Chem. 2010; 31: 39 1b Dvorak CA, Schmitz WD, Poon DJ. Angew. Chem. Int. Ed. 2000; 39: 1664 1c Murru S, Patal BK, Bras JL, Muzart J. J. Org. Chem. 2009; 74: 2217 1d Berger MD, Dutia M, Powell D, Floyd BM, Torres N, Mallon R, Wojciechowicz D, Kim S, Feldberg L, Collins K, Chaudhary I. Bioorg. Med. Chem. 2008; 16: 9202 1e Chen-Hsien W. Synthesis 1981; 622 2a Denise A, Colby RG, Jonathan A. Chem. Rev. 2010; 110: 624 2b Gerald D. Handbook of C–H Transformation, Applications in Organic Synthesis. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim: 2005 2c Gunay A, Klaus H. Chem. Rev. 2010; 110: 1060 2d Thomas WL, Melanie SS. Chem. Rev. 2010; 110: 1147 3 Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790 4 Fukuzawa S.-I, Shimizu S.-I, Atsuumi Y, Haga M, Ogata K. Tetrahedron Lett. 2009; 50: 2374 5 Zhang S, Qian P, Zhang M, Hu M, Cheng J. J. Org. Chem. 2010; 75: 6732 6 Tang R, Xie Y, Xie Y, Xiang J, Li J. Chem. Commun. 2011; 47: 12867 7 Ding ST, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 1 8a Barve BD, Wu Y, Chuang D, Chung Y, Tsai Y, Wu S, Michal K, Du Y, Hsieh C, Wang J, Chang F. Eur. J. Org. Chem. 2012; 6760 8b Sawant DN, Wagh YS, Bhatte KD, Bhanage BM. J. Org. Chem. 2011; 76: 5489 8c Li Y, Xie Y, Zhang R, Jin K, Wang X, Duan C. J. Org. Chem. 2011; 76: 5444 9a Kumar GS, Maheswari CU, Kumar RA, Kantam ML, Reddy KR. Angew. Chem. Int. Ed. 2011; 50: 11748 9b He T, Li H, Li P, Wang L. Chem. Commun. 2011; 47: 8946 10 Typical Procedure: Under a N2 atmosphere, a reaction vessel was charged with 1a (or 1b, 1c) (1.0 mmol), ArSH 2 (1.2 mmol), Cu(OAc)2·H2O (10 mol%), and 70% aq TBHP (4 mmol). The mixture was stirred at 120 °C and monitored by TLC. Upon completion of the reaction (approximately 12 h), the mixture was cooled to r.t. and mixed with H2O (15.0 mL). The product was then extracted with CH2Cl2 (3 × 10 mL). The organic layers were combined, dried over anhyd Na2SO4, concentrated under reduced pressure, and purified over a column of silica gel (EtOAc–hexane as eluent) to give product 3a in 87% yield. 1H NMR (300 MHz, CDCl3): δ = 7.34−7.43 (m, 4 H), 3.72 (t, J = 5.1 Hz, 4 H), 3.59 (t, J = 4.8 Hz, 4 H). 13C NMR (75 MHz, CDCl3): δ = 164.6, 135.9, 134.8, 128.2, 125.5, 65.4, 44.3. The identity and purity of other products were confirmed by 1H NMR and 13C NMR spectroscopic analysis. 11 Liu Z, Zhang J, Chen S, Shi E, Xu Y, Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231 12a Xie J, Huang Z. Angew. Chem. Int. Ed. 2010; 49: 10181 12b Sadananda R, Lee R, Heryadi D, Shen C, Wu J, Zhang P, Huang K, Liu X. J. Org. Chem. 2011; 76: 8999 12c Dai C, Xu Z, Huang F, Yu Z, Gao Y. J. Org. Chem. 2012; 77: 4414 Supplementary Material Supplementary Material Supporting Information