Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(6): 752-756
DOI: 10.1055/s-0032-1318302
DOI: 10.1055/s-0032-1318302
letter
Relay Catalysis by a Ruthenium Complex–Chiral Brønsted Acid Binary Sytem for Ternary Reaction Sequence Involving Enantioselective Pictet–Spengler-Type Cyclization as the Key Step
Further Information
Publication History
Received: 04 January 2013
Accepted after revision: 01 February 2013
Publication Date:
27 February 2013 (online)

Abstract
Relay catalysis for a ternary reaction sequence composed of double-bond isomerization, protonation of the double bond, and enantioselective Pictet–Spengler-type cyclization was accomplished using a binary catalytic system consisting of a ruthenium hydride complex and a chiral phosphoric acid as the chiral Brønsted acid catalyst.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Park YJ, Park J.-W, Jun C.-H. Acc. Chem. Res. 2008; 41: 222
- 1b Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
- 1c Zhou J. Chem. Asian J. 2010; 5: 422
- 1d Hashmi AS. K, Hubbert C. Angew. Chem. Int. Ed. 2010; 49: 1010
- 1e de Armas P, Tejedor D, García-Tellado F. Angew. Chem. Int. Ed. 2010; 49: 1013
- 1f Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2999
- 1g Rueping M, Koenigs RM, Atodiresei I. Chem. Eur. J. 2010; 16: 9350
- 1h Jellerichs BG, Kong J.-R, Krische MJ. J. Am. Chem. Soc. 2003; 125: 7758
- 2a Komanduri V, Krische MJ. J. Am. Chem. Soc. 2006; 128: 16448
- 2b Rueping M, Antonchick AP, Brinkmann C. Angew. Chem. Int. Ed. 2007; 46: 6903
- 2c Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
- 2d Hu W, Xu X, Zhou J, Liu W.-J, Huang H, Hu J, Yang L, Gong L.-Z. J. Am. Chem. Soc. 2008; 130: 7782
- 2e Xu X, Zhou J, Yang L, Hu W. Chem. Commun. 2008; 6564
- 2f Qian Y, Xu X, Jiang L, Prajapati D, Hu W. J. Org. Chem. 2010; 75: 7483
- 2g Xu X, Qian Y, Yang L, Hu W. Chem. Commun. 2011; 47: 797
- 2h Jiang J, Xu H.-D, Xi J.-B, Ren B.-Y, Lv F.-P, Guo X, Jiang L.-Q, Zhang Z.-Y, Hu W. J. Am. Chem. Soc. 2011; 133: 8428
- 2i Xu B, Zhu S.-F, Xie X.-L, Shen J.-J, Zhou Q.-L. Angew. Chem. Int. Ed. 2011; 50: 11483
- 2j Chai Z, Rainey TJ. J. Am. Chem. Soc. 2012; 134: 3615
- 2k Qiu H, Li M, Jiang L.-Q, Lv F.-P, Zan L, Zhai C.-W, Doyle MP, Hu W. Nat. Chem. 2012; 4: 733
- 3a Sorimachi K, Terada M. J. Am. Chem. Soc. 2008; 130: 14452
- 3b Han Z.-Y, Xiao H, Chen X.-H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
- 3c Muratore ME, Holloway CA, Pilling AW, Storer RI, Trevitt G, Dixon DJ. J. Am. Chem. Soc. 2009; 131: 10796
- 3d Liu X.-Y, Che C.-M. Org. Lett. 2009; 11: 4204
- 3e Cai Q, Zhao Z.-A, You S.-L. Angew. Chem. Int. Ed. 2009; 48: 7428
- 3f Wang C, Han Z.-Y, Luo H.-W, Gong L.-Z. Org. Lett. 2010; 12: 2266
- 3g Cai Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
- 3h Chen Q.-A, Wang D.-S, Zhou Y.-G, Duan Y, Fan H.-J, Yang Y, Zhang Z. J. Am. Chem. Soc. 2011; 133: 6126
- 3i Han Z.-Y, Guo R, Wang P.-S, Chen D.-F, Xiao H, Gong L.-Z. Tetrahedron Lett. 2011; 52: 5963
- 3j Chen Q.-A, Chen M.-W, Yu C.-B, Shi L, Wang D.-S, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2011; 133: 16432
- 3k Ren L, Lei T, Ye J.-X, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 771
- 3l Chen Q.-A, Gao K, Duan Y, Ye Z.-S, Shi L, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2012; 134: 2442
- 3m Terada M, Toda Y. Angew. Chem. Int. Ed. 2012; 51: 2093
- 3n Han Z.-Y, Chen D.-F, Wang Y.-Y, Guo R, Wang P.-S, Wang C, Gong L.-Z. J. Am. Chem. Soc. 2012; 134: 6532
- 3o Cai Q, Liang X.-W, Wang S.-G, Zhang J.-W, Zhang X, You S.-L. Org. Lett. 2012; 14: 5022
- 3p See also: Vora HU, Rovis T. J. Am. Chem. Soc. 2007; 129: 13796
- 4a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 4b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 5a Connon SJ. Angew. Chem. Int. Ed. 2006; 45: 3909
- 5b Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
- 5c Akiyama T. Chem. Rev. 2007; 107: 5744
- 5d Adair G, Mukherjee S, List B. Aldrichimica Acta 2008; 41: 31
- 5e Terada M. Chem. Commun. 2008; 4097
- 5f Terada M. Bull. Chem. Soc. Jpn. 2010; 83: 101
- 5g Terada M. Synthesis 2010; 1929
- 5h Zamfir A, Schenker S, Freund M, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
- 5i Terada M. Curr. Org. Chem. 2011; 15: 2227
- 5j Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
- 6a Stille JK, Becker Y. J. Org. Chem. 1980; 45: 2139
- 6b Krompiec S, Pigulla M, Bieg T, Szczepankiewicz W, Kuźnik N, Krompiec M, Kubicki M. J. Mol. Catal. A: Chem. 2002; 189: 169
- 6c Greenwood ES, Parsons PJ, Young MJ. Synth. Commun. 2003; 33: 223
- 6d Krompiec S, Pigulla M, Kuźnik N, Krompiec M, Baj S, Mrowiec-Bialoń J, Kasperzyk J. Tetrahedron Lett. 2004; 45: 5257
- 6e Formentín P, Gimeno N, Steinke JH. G, Vilar R. J. Org. Chem. 2005; 70: 8235
- 6f Krompiec S, Pigulla M, Kuźnik N, Krompiec M, Marciniec B, Chadyniak D, Kasperzyk J. J. Mol. Catal. A: Chem. 2005; 225: 91
- 7a Terada M, Sorimachi K. J. Am. Chem. Soc. 2007; 129: 292
- 7b Jia Y.-X, Zhong J, Zhu S.-F, Zhang C.-M, Zhou Q.-L. Angew. Chem. Int. Ed. 2007; 46: 5565
- 7c Baudequin C, Zamfir A, Tsogoeva SB. Chem. Commun. 2008; 4637
- 7d Terada M, Tanaka H, Sorimachi K. Synlett 2008; 1161
- 7e Li G, Antilla JC. Org. Lett. 2009; 11: 1075
- 7f See also: Kobayashi S, Gustafsson T, Shimizu Y, Kiyohara R. Org. Lett. 2006; 8: 4923
- 8a Murahashi S.-I, Imada Y, Kawakami T, Harada K, Yonemushi Y, Tomita N. J. Am. Chem. Soc. 2002; 124: 2888
- 8b Taylor MS, Tokunaga N, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 6700
- 8c Sasamoto N, Dubs C, Hamashima Y, Sodeoka M. J. Am. Chem. Soc. 2006; 128: 14010
- 9a Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
- 9b Cox ED, Cook JM. Chem. Rev. 1995; 95: 1797
- 9c Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
- 10a Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
- 10b Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
- 10c Mergott DJ, Zuend SJ, Jacobsen EN. Org. Lett. 2008; 10: 745
- 10d Raheem IT, Thiara PS, Jacobsen EN. Org. Lett. 2008; 10: 1577
- 10e Klausen RS, Jacobsen EN. Org. Lett. 2009; 11: 887
- 11a Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086
- 11b Wanner MJ, van der Haas RN. S, de Cuba KR, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2007; 46: 7485
- 11c Sewgobind NV, Wanner MJ, Ingemann S, de Gelder R, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2008; 73: 6405
- 11d Wanner MJ, Boots RN. A, Eradus B, de Gelder R, van Maarseveen JH, Hiemstra H. Org. Lett. 2009; 11: 2579
- 11e Holloway CA, Muratore ME, Storer RI, Dixon DJ. Org. Lett. 2010; 12: 4720
- 11f Gómez-Sanjuan A, Sotomayor N, Lete E. Tetrahedron Lett. 2012; 53: 2157. See also refs. 3c,o
- 12 For details regarding the screening of chiral phosphoric acid catalysts, see the Supporting Information.
- 13 Representative Procedure for the Relay Catalysis (Table 2, Entry 1) To a dried test tube were added (R)-2 (G = 9-anthryl; 5 mol%, 7.01 mg) and 3b (55.5 mg, 0.20 mmol). The mixture was dissolved in toluene (1.0 mL), and then the atmosphere was replaced with argon. [RuClH(CO)(PPh3)3] (1) (2 mol%, 3.81 mg) was added in portion at r.t., and the tube was flushed again with argon. After stirring at 50 °C for 12 h, the reaction mixture was diluted with sat. aq NaHCO3 and extracted with CH2Cl2 (3×). The combined organic layers were dried over Na2SO4, filtered, and concentrated. After purification by flash column chromatography on silica gel (hexane–EtOAc = 10:1 to 2:1 as eluent), 5b was obtained in 62% yield as a white solid. The ee of 5b was determined by chiral stationary phase HPLC analysis. Compound 5b: white solid; Rf = 0.50 (hexane–EtOAc = 2:1). HPLC analysis Chiralpak IA (hexane–2-PrOH = 90:10, 0.8 mL/min, 254 nm, 30 °C): t R (major) = 10.1 min; t R (minor) = 12.5 min (37% ee); [α]D 26 +24.5 (c 1.1, CHCl3); rotamer (major/minor = 60:40) was observed. 1H NMR (500 MHz, CDCl3): δ = 0.95–0.97 (3 H, m), 1.48 (9 H, s), 1.68–1.80 (2 H, m), 2.64–2.67 (1 H, m), 2.81–2.89 (1 H, m), 3.12–3.14 (0.60 H, m), 3.26–3.30 (0.40 H, m), 3.89–3.91 (0.40 H, m), 4.14–4.16 (0.60 H, m), 4.86–4.99 (2 H, m), 6.59 (1 H, s), 6.64–6.68 (1 H, m), 6.96–6.97 (1 H, m). 13C NMR (125.65 MHz, CDCl3): δ = 10.88, 11.18, 28.44, 28.66, 29.73, 30.09, 37.01, 38.48, 55.24, 56.08, 79.86, 80.19, 113.49, 114.98, 115.10, 128.00, 128.30, 129.29, 129.51, 135.21, 135.46, 154.73, 154.83, 155.38, 155.46. IR (ATR): 3330, 2971, 2932, 2875, 1687, 1656, 1613, 1427, 1232, 1160, 918, 863 cm–1. ESI-HRMS: m/z calcd for C16H23NO3Na [M + Na]+: 300.1570; found: 300.1569.
- 14 The reaction of the product 5b with ruthenium complex 1 and chiral phosphoric acid 2 under the same reaction conditions (50 °C, 12 h). 5b was recovered quantitatively, and no racemization of 5b was observed.
- 15a The absolute configuration was determined to be S by optical rotation after derivatization to (S)-1-ethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline: [α]D 24 –24.2 (c 2.2, CH2Cl2); literature value of S-isomer [α]D 20 –51.9 (c 2.1, CH2Cl2). See: Polniaszek RP, Kaufman CR. J. Am. Chem. Soc. 1989; 111: 4859
- 15b Compound 5g: white solid; Rf = 0.45 (hexane–EtOAc = 2:1). HPLC analysis Chiralpak IA (hexane–EtOH = 96:4, 1.0 mL/min, 254 nm, 30 °C): t R (minor) = 11.3 min; t R (major) = 21.9 min (53% ee); [α]D 25 +49.7 (c 1.2, CHCl3); rotamer (major/minor = 55:45) was observed. 1H NMR (500 MHz, CDCl3): δ = 0.98–0.99 (3 H, m), 1.48 (9 H, s), 1.71–1.80 (2 H, m), 2.57–2.61 (1 H, m), 2.74–2.86 (1 H, m), 3.09–3.13 (0.55 H, m), 3.23–3.27 (0.45 H, m), 3.85–3.92 (3.45 H, m), 4.16–4.18 (0.55 H, m), 4.84–4.86 (0.55 H, m), 4.96–4.98 (0.45 H, m), 5.53 (1 H, brs), 6.57 (1 H, s), 6.65–6.66 (1 H, m). 13C NMR (125.65 MHz, CDCl3): δ = 10.85, 11.09, 27.64, 27.78, 28.31, 29.57, 29.96, 36.62, 38.33, 55.06, 55.84, 79.22, 79.51, 109.29, 109.63, 114.21, 114.46, 126.52, 126.81, 129.15, 129.51, 144.06, 144.16, 144.95, 145.03, 154.92, 155.04; IR (ATR): 3369, 2969, 2932, 2842, 1683, 1515, 1420, 1364, 1271, 1241, 1111, 932, 863 cm–1. ESI-HRMS: m/z calcd for C17H25NO4Na [M + Na]+: 330.1676; found: 330.1675.
- 16 Kobayashi and co-workers showed that the Pictet–Spengler reaction of benzaldehyde with m-tyramine using Brønsted acids, such as sulfonic acid and carboxylic acid, gave the corresponding product in low yield, see: Manabe K, Nobutou D, Kobayashi S. Bioorg. Med. Chem. 2005; 13: 5154
For reviews on combined metal complex and organocatalyst systems, see:
For a seminal study, see:
For selected examples of cooperative catalysis using metal complex–chiral phosphoric acid binary systems, see:
For selected examples of relay catalysis using metal complex–(chiral) phosphoric acid binary systems, see:
For seminal studies of chiral phosphoric acid catalysts, see:
For recent reviews on chiral phosphoric acid catalysts, see:
For selected examples of addition reactions to 3,4-dihydroisoquinoline derivatives, see: