Synlett 2013; 24(6): 752-756 DOI: 10.1055/s-0032-1318302
© Georg Thieme Verlag Stuttgart · New York
Relay Catalysis by a Ruthenium Complex–Chiral Brønsted Acid Binary Sytem for Ternary Reaction Sequence Involving Enantioselective Pictet–Spengler-Type Cyclization as the Key Step
Yasunori Toda
a
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan Fax: +81(22)7956602 Email:
mterada@m.tohoku.ac.jp
,
Masahiro Terada*
a
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan Fax: +81(22)7956602 Email:
mterada@m.tohoku.ac.jp
b
Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
› Author Affiliations
Abstract
Relay catalysis for a ternary reaction sequence composed of double-bond isomerization, protonation of the double bond, and enantioselective Pictet–Spengler-type cyclization was accomplished using a binary catalytic system consisting of a ruthenium hydride complex and a chiral phosphoric acid as the chiral Brønsted acid catalyst.
Key words asymmetric catalysis - isomerization - protonation - cyclization - phenols
References and Notes
For reviews on combined metal complex and organocatalyst systems, see:
1a Park YJ, Park J.-W, Jun C.-H. Acc. Chem. Res. 2008; 41: 222
1b Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
1c Zhou J. Chem. Asian J. 2010; 5: 422
1d Hashmi AS. K, Hubbert C. Angew. Chem. Int. Ed. 2010; 49: 1010
1e de Armas P, Tejedor D, García-Tellado F. Angew. Chem. Int. Ed. 2010; 49: 1013
1f Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2999
1g Rueping M, Koenigs RM, Atodiresei I. Chem. Eur. J. 2010; 16: 9350
For a seminal study, see:
1h Jellerichs BG, Kong J.-R, Krische MJ. J. Am. Chem. Soc. 2003; 125: 7758
For selected examples of cooperative catalysis using metal complex–chiral phosphoric acid binary systems, see:
2a Komanduri V, Krische MJ. J. Am. Chem. Soc. 2006; 128: 16448
2b Rueping M, Antonchick AP, Brinkmann C. Angew. Chem. Int. Ed. 2007; 46: 6903
2c Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
2d Hu W, Xu X, Zhou J, Liu W.-J, Huang H, Hu J, Yang L, Gong L.-Z. J. Am. Chem. Soc. 2008; 130: 7782
2e Xu X, Zhou J, Yang L, Hu W. Chem. Commun. 2008; 6564
2f Qian Y, Xu X, Jiang L, Prajapati D, Hu W. J. Org. Chem. 2010; 75: 7483
2g Xu X, Qian Y, Yang L, Hu W. Chem. Commun. 2011; 47: 797
2h Jiang J, Xu H.-D, Xi J.-B, Ren B.-Y, Lv F.-P, Guo X, Jiang L.-Q, Zhang Z.-Y, Hu W. J. Am. Chem. Soc. 2011; 133: 8428
2i Xu B, Zhu S.-F, Xie X.-L, Shen J.-J, Zhou Q.-L. Angew. Chem. Int. Ed. 2011; 50: 11483
2j Chai Z, Rainey TJ. J. Am. Chem. Soc. 2012; 134: 3615
2k Qiu H, Li M, Jiang L.-Q, Lv F.-P, Zan L, Zhai C.-W, Doyle MP, Hu W. Nat. Chem. 2012; 4: 733
For selected examples of relay catalysis using metal complex–(chiral) phosphoric acid binary systems, see:
3a Sorimachi K, Terada M. J. Am. Chem. Soc. 2008; 130: 14452
3b Han Z.-Y, Xiao H, Chen X.-H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
3c Muratore ME, Holloway CA, Pilling AW, Storer RI, Trevitt G, Dixon DJ. J. Am. Chem. Soc. 2009; 131: 10796
3d Liu X.-Y, Che C.-M. Org. Lett. 2009; 11: 4204
3e Cai Q, Zhao Z.-A, You S.-L. Angew. Chem. Int. Ed. 2009; 48: 7428
3f Wang C, Han Z.-Y, Luo H.-W, Gong L.-Z. Org. Lett. 2010; 12: 2266
3g Cai Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
3h Chen Q.-A, Wang D.-S, Zhou Y.-G, Duan Y, Fan H.-J, Yang Y, Zhang Z. J. Am. Chem. Soc. 2011; 133: 6126
3i Han Z.-Y, Guo R, Wang P.-S, Chen D.-F, Xiao H, Gong L.-Z. Tetrahedron Lett. 2011; 52: 5963
3j Chen Q.-A, Chen M.-W, Yu C.-B, Shi L, Wang D.-S, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2011; 133: 16432
3k Ren L, Lei T, Ye J.-X, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 771
3l Chen Q.-A, Gao K, Duan Y, Ye Z.-S, Shi L, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2012; 134: 2442
3m Terada M, Toda Y. Angew. Chem. Int. Ed. 2012; 51: 2093
3n Han Z.-Y, Chen D.-F, Wang Y.-Y, Guo R, Wang P.-S, Wang C, Gong L.-Z. J. Am. Chem. Soc. 2012; 134: 6532
3o Cai Q, Liang X.-W, Wang S.-G, Zhang J.-W, Zhang X, You S.-L. Org. Lett. 2012; 14: 5022
3p See also: Vora HU, Rovis T. J. Am. Chem. Soc. 2007; 129: 13796
For seminal studies of chiral phosphoric acid catalysts, see:
4a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
4b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
For recent reviews on chiral phosphoric acid catalysts, see:
5a Connon SJ. Angew. Chem. Int. Ed. 2006; 45: 3909
5b Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
5c Akiyama T. Chem. Rev. 2007; 107: 5744
5d Adair G, Mukherjee S, List B. Aldrichimica Acta 2008; 41: 31
5e Terada M. Chem. Commun. 2008; 4097
5f Terada M. Bull. Chem. Soc. Jpn. 2010; 83: 101
5g Terada M. Synthesis 2010; 1929
5h Zamfir A, Schenker S, Freund M, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
5i Terada M. Curr. Org. Chem. 2011; 15: 2227
5j Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
6a Stille JK, Becker Y. J. Org. Chem. 1980; 45: 2139
6b Krompiec S, Pigulla M, Bieg T, Szczepankiewicz W, Kuźnik N, Krompiec M, Kubicki M. J. Mol. Catal. A: Chem. 2002; 189: 169
6c Greenwood ES, Parsons PJ, Young MJ. Synth. Commun. 2003; 33: 223
6d Krompiec S, Pigulla M, Kuźnik N, Krompiec M, Baj S, Mrowiec-Bialoń J, Kasperzyk J. Tetrahedron Lett. 2004; 45: 5257
6e Formentín P, Gimeno N, Steinke JH. G, Vilar R. J. Org. Chem. 2005; 70: 8235
6f Krompiec S, Pigulla M, Kuźnik N, Krompiec M, Marciniec B, Chadyniak D, Kasperzyk J. J. Mol. Catal. A: Chem. 2005; 225: 91
7a Terada M, Sorimachi K. J. Am. Chem. Soc. 2007; 129: 292
7b Jia Y.-X, Zhong J, Zhu S.-F, Zhang C.-M, Zhou Q.-L. Angew. Chem. Int. Ed. 2007; 46: 5565
7c Baudequin C, Zamfir A, Tsogoeva SB. Chem. Commun. 2008; 4637
7d Terada M, Tanaka H, Sorimachi K. Synlett 2008; 1161
7e Li G, Antilla JC. Org. Lett. 2009; 11: 1075
7f See also: Kobayashi S, Gustafsson T, Shimizu Y, Kiyohara R. Org. Lett. 2006; 8: 4923
For selected examples of addition reactions to 3,4-dihydroisoquinoline derivatives, see:
8a Murahashi S.-I, Imada Y, Kawakami T, Harada K, Yonemushi Y, Tomita N. J. Am. Chem. Soc. 2002; 124: 2888
8b Taylor MS, Tokunaga N, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 6700
8c Sasamoto N, Dubs C, Hamashima Y, Sodeoka M. J. Am. Chem. Soc. 2006; 128: 14010
9a Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
9b Cox ED, Cook JM. Chem. Rev. 1995; 95: 1797
9c Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
10a Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
10b Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
10c Mergott DJ, Zuend SJ, Jacobsen EN. Org. Lett. 2008; 10: 745
10d Raheem IT, Thiara PS, Jacobsen EN. Org. Lett. 2008; 10: 1577
10e Klausen RS, Jacobsen EN. Org. Lett. 2009; 11: 887
11a Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086
11b Wanner MJ, van der Haas RN. S, de Cuba KR, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2007; 46: 7485
11c Sewgobind NV, Wanner MJ, Ingemann S, de Gelder R, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2008; 73: 6405
11d Wanner MJ, Boots RN. A, Eradus B, de Gelder R, van Maarseveen JH, Hiemstra H. Org. Lett. 2009; 11: 2579
11e Holloway CA, Muratore ME, Storer RI, Dixon DJ. Org. Lett. 2010; 12: 4720
11f Gómez-Sanjuan A, Sotomayor N, Lete E. Tetrahedron Lett. 2012; 53: 2157. See also refs. 3c,o
12 For details regarding the screening of chiral phosphoric acid catalysts, see the Supporting Information.
13
Representative Procedure for the Relay Catalysis (Table 2, Entry 1)
To a dried test tube were added (R )-2 (G = 9-anthryl; 5 mol%, 7.01 mg) and 3b (55.5 mg, 0.20 mmol). The mixture was dissolved in toluene (1.0 mL), and then the atmosphere was replaced with argon. [RuClH(CO)(PPh3 )3 ] (1 ) (2 mol%, 3.81 mg) was added in portion at r.t., and the tube was flushed again with argon. After stirring at 50 °C for 12 h, the reaction mixture was diluted with sat. aq NaHCO3 and extracted with CH2 Cl2 (3×). The combined organic layers were dried over Na2 SO4 , filtered, and concentrated. After purification by flash column chromatography on silica gel (hexane–EtOAc = 10:1 to 2:1 as eluent), 5b was obtained in 62% yield as a white solid. The ee of 5b was determined by chiral stationary phase HPLC analysis.
Compound 5b : white solid; Rf
= 0.50 (hexane–EtOAc = 2:1). HPLC analysis Chiralpak IA (hexane–2-PrOH = 90:10, 0.8 mL/min, 254 nm, 30 °C): t
R (major) = 10.1 min; t
R (minor) = 12.5 min (37% ee); [α]D
26 +24.5 (c 1.1, CHCl3 ); rotamer (major/minor = 60:40) was observed. 1 H NMR (500 MHz, CDCl3 ): δ = 0.95–0.97 (3 H, m), 1.48 (9 H, s), 1.68–1.80 (2 H, m), 2.64–2.67 (1 H, m), 2.81–2.89 (1 H, m), 3.12–3.14 (0.60 H, m), 3.26–3.30 (0.40 H, m), 3.89–3.91 (0.40 H, m), 4.14–4.16 (0.60 H, m), 4.86–4.99 (2 H, m), 6.59 (1 H, s), 6.64–6.68 (1 H, m), 6.96–6.97 (1 H, m). 13 C NMR (125.65 MHz, CDCl3 ): δ = 10.88, 11.18, 28.44, 28.66, 29.73, 30.09, 37.01, 38.48, 55.24, 56.08, 79.86, 80.19, 113.49, 114.98, 115.10, 128.00, 128.30, 129.29, 129.51, 135.21, 135.46, 154.73, 154.83, 155.38, 155.46. IR (ATR): 3330, 2971, 2932, 2875, 1687, 1656, 1613, 1427, 1232, 1160, 918, 863 cm–1 . ESI-HRMS: m/z calcd for C16 H23 NO3 Na [M + Na]+ : 300.1570; found: 300.1569.
14 The reaction of the product 5b with ruthenium complex 1 and chiral phosphoric acid 2 under the same reaction conditions (50 °C, 12 h). 5b was recovered quantitatively, and no racemization of 5b was observed.
15a The absolute configuration was determined to be S by optical rotation after derivatization to (S )-1-ethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline: [α]D
24 –24.2 (c 2.2, CH2 Cl2 ); literature value of S -isomer [α]D
20 –51.9 (c 2.1, CH2 Cl2 ). See: Polniaszek RP, Kaufman CR. J. Am. Chem. Soc. 1989; 111: 4859
15b Compound 5g : white solid; Rf
= 0.45 (hexane–EtOAc = 2:1). HPLC analysis Chiralpak IA (hexane–EtOH = 96:4, 1.0 mL/min, 254 nm, 30 °C): t
R (minor) = 11.3 min; t
R (major) = 21.9 min (53% ee); [α]D
25 +49.7 (c 1.2, CHCl3 ); rotamer (major/minor = 55:45) was observed. 1 H NMR (500 MHz, CDCl3 ): δ = 0.98–0.99 (3 H, m), 1.48 (9 H, s), 1.71–1.80 (2 H, m), 2.57–2.61 (1 H, m), 2.74–2.86 (1 H, m), 3.09–3.13 (0.55 H, m), 3.23–3.27 (0.45 H, m), 3.85–3.92 (3.45 H, m), 4.16–4.18 (0.55 H, m), 4.84–4.86 (0.55 H, m), 4.96–4.98 (0.45 H, m), 5.53 (1 H, brs), 6.57 (1 H, s), 6.65–6.66 (1 H, m). 13 C NMR (125.65 MHz, CDCl3 ): δ = 10.85, 11.09, 27.64, 27.78, 28.31, 29.57, 29.96, 36.62, 38.33, 55.06, 55.84, 79.22, 79.51, 109.29, 109.63, 114.21, 114.46, 126.52, 126.81, 129.15, 129.51, 144.06, 144.16, 144.95, 145.03, 154.92, 155.04; IR (ATR): 3369, 2969, 2932, 2842, 1683, 1515, 1420, 1364, 1271, 1241, 1111, 932, 863 cm–1 . ESI-HRMS: m/z calcd for C17 H25 NO4 Na [M + Na]+ : 330.1676; found: 330.1675.
16 Kobayashi and co-workers showed that the Pictet–Spengler reaction of benzaldehyde with m -tyramine using Brønsted acids, such as sulfonic acid and carboxylic acid, gave the corresponding product in low yield, see: Manabe K, Nobutou D, Kobayashi S. Bioorg. Med. Chem. 2005; 13: 5154