Subscribe to RSS
DOI: 10.1055/s-0033-1338745
Kinetic Resolution of 3-Hydroxy-3-Substituted Oxindoles through NHC-Catalyzed Oxidative Esterification
Publication History
Received: 23 March 2013
Accepted: 15 April 2013
Publication Date:
08 May 2013 (online)
Abstract
The enantioselective synthesis of 3-hydroxy-3-substituted oxindoles has been extensively studied as they represent the core structure of a large number of natural products and pharmaceuticals. While the majority of previous methods focus on the asymmetric addition of different types of nucleophiles to the corresponding ketones, we have reported an unprecedented and alternative approach, namely catalytic kinetic resolution of this important class of tertiary alcohols to provide, for the first time, 3-hydroxy oxindoles with a wide range of 3-substituents including alkyl, alkenyl, alkynyl and aryl groups in highly enantioenriched form. The excellent level of differentiation of the two tertiary alcohol enantiomers (S up to 78) has been realized through oxidative esterification catalyzed by chiral N-heterocyclic carbene (NHC), with the aid of cooperative catalysis by Lewis acid.
-
References
- 1 Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
- 2 Hewawasam P, Erway M, Moon SL, Knipe J, Weiner H, Boissard CG, Post-Munson DJ, Gao Q, Huang S, Gribkoff VK, Meanwell NA. J. Med. Chem. 2002; 45: 1487
- 3 Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
- 4a Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
- 4b Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
- 5a France S, Guerin DJ, Miller SJ, Lectka T. Chem. Rev. 2003; 103: 2985
- 5b Fu GC. Acc. Chem. Res. 2004; 37: 542
- 5c Jarvo ER, Miller SJ In Comprehensive Asymmetric Catalysis (Supplement 1) . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 2004: 189
- 6a List B, Shabat D, Zhong G, Turner JM, Li A, Bui T, Anderson J, Lerner RA, Barbas CF. J. Am. Chem. Soc. 1999; 121: 7283
- 6b Kourist R, Bartsch S, Bornscheuer UT. Adv. Synth. Catal. 2007; 349: 1393
- 6c Jarvo ER, Evans CA, Copeland GT, Miller SJ. J. Org. Chem. 2001; 66: 5522
- 6d Angione MC, Miller SJ. Tetrahedron 2006; 62: 5254
- 6e Tosaki S, Hara K, Gnanadesikan V, Morimoto H, Harada S, Sugita M, Yamagiwa N, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 11776
- 6f Shintani R, Takatsu K, Hayashi T. Org. Lett. 2008; 10: 1191
- 6g Karatas B, Rendler S, FrÖhlich R, Oestreich M. Org. Biomol. Chem. 2008; 6: 1435
- 6h Schipper DJ, Rousseaux S, Fagnou K. Angew. Chem. Int. Ed. 2009; 48: 8343
- 6i Čorić I, Müller S, List B. J. Am. Chem. Soc. 2010; 132: 17370
- 7 Mahatthananchai J, Zheng P, Bode JW. Angew. Chem. Int. Ed. 2011; 50: 1673
- 8a Marion N, Díez-González S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
- 8b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 8c Phillips EM, Chan A, Scheidt KA. Aldrichimica Acta 2009; 42: 55
- 8d Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
- 8e Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
- 8f Chiang PC, Bode JW In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools . Díez-González S. Royal Society of Chemistry; Cambridge: 2011: 399
- 9a Chow KY.-K, Bode JW. J. Am. Chem. Soc. 2004; 126: 8126
- 9b Reynolds NT, Read de Alaniz J, Rovis T. J. Am. Chem. Soc. 2004; 126: 9518
- 9c Burstein C, Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205
- 9d Sohn SS, Rosen EL, Bode JW. J. Am. Chem. Soc. 2004; 126: 14370
- 9e Chan A, Scheidt KA. Org. Lett. 2005; 7: 905
- 9f Zeitler K. Org. Lett. 2006; 8: 637
- 9g Zhao Y.-M, Tam Y, Wang Y.-J, Li Z, Sun J. Org. Lett. 2012; 14: 1398
- 10a Tam S, Jimenez L, Diederich F. J. Am. Chem. Soc. 1992; 114: 1503
- 10b Maki BE, Chan A, Phillips EM, Scheidt KA. Org. Lett. 2007; 9: 371
- 10c Maki BE, Chan A, Phillips EM, Scheidt KA. Tetrahedron 2009; 65: 3102
- 10d Noonan C, Baragwanath L, Connon SJ. Tetrahedron Lett. 2008; 49: 4003
- 10e Guin J, De Sarkar S, Grimme S, Studer A. Angew. Chem. Int. Ed. 2008; 47: 8727
- 10f De Sarkar S, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190
- 10g De Sarkar S, Biswas A, Song CH, Studer A. Synthesis 2011; 1974
- 10h Rong Z.-Q, Jia M.-Q, You S.-L. Org. Lett. 2011; 13: 4080
- 10i Mo J, Chen X, Chi YR. J. Am. Chem. Soc. 2012; 134: 8810
- 10j Kravina AG, Mahatthananchai J, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9433
- 11a Suzuki Y, Yamauchi K, Muramatsu K, Sato M. Chem. Commun. 2004; 2770
- 11b Kano T, Sasaki K, Maruoka K. Org. Lett. 2005; 7: 1347
- 12a Raup DE. A, Cardinal-David B, Holte D, Scheidt KA. Nature Chem. 2010; 2: 766
- 12b Cardinal-David B, Raup DE. A, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 5345
- 12c Cohen DT, Cardinal-David B, Scheidt KA. Angew. Chem. Int. Ed. 2011; 50: 1678
- 12d Cohen DT, Cardinal-David B, Roberts JM, Sarjeant AA, Scheidt KA. Org. Lett. 2011; 13: 1068
- 12e Cohen DT, Scheidt KA. Chem. Sci. 2012; 3: 53
- 12f Zhao X, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2011; 133: 12466
- 13 Shintani R, Inoue M, Hayashi T. Angew. Chem. Int. Ed. 2006; 45: 3353
- 14 Hanhan NV, Sahin AH, Chang TW, Fettinger JC, Franz AK. Angew. Chem. Int. Ed. 2010; 49: 744
- 15 Sano D, Nagata K, Itoh T. Org. Lett. 2008; 10: 1593