Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(16): 2107-2113
DOI: 10.1055/s-0033-1339519
DOI: 10.1055/s-0033-1339519
letter
Expeditious Synthesis of Novel β-Lactam-Substituted Polycyclic Fused Chromeno Pyrrole Derivatives from MBH Carbonates by Intramolecular [3+2]-Cycloaddition Reaction
Further Information
Publication History
Received: 07 May 2013
Accepted after revision: 17 July 2013
Publication Date:
28 August 2013 (online)
Abstract
A facile synthesis of tri- and tetracyclic fused chromeno pyrrole derivatives has been accomplished by intramolecular cycloaddition reaction of azomethine ylides generated from cyclic/acyclic secondary amino acids with O-allylated salicylaldehydes obtained from Morita–Baylis–Hillman carbonates of β-lactam aldehyde. The stereochemistry of the cycloadducts was confirmed on the basis of single crystal X-ray diffraction data.
-
References and Notes
- 1a Lidstrom P, Tierney J, Wathey B, Westman J. Tetrahedron 2001; 57: 9225
- 1b Nagariya AK, Meena AK, Kiran Yadav AK, Niranjan US, Pathak AK, Singh B, Rao MM. J. Pharm. Res. 2010; 3: 575
- 1c Kappe OC. Angew. Chem. Int. Ed. 2004; 43: 6250
- 1d Novikov MS, Khlebnikov AF, Shevchenko MV, Kostikov RR, Vidovic D. Russ. J. Org. Chem. 2005; 41: 1496
- 1e Ruano JL. G, Tito A, Peromingo MT. J. Org. Chem. 2002; 67: 981
- 1f Ulbrich H, Fiebich B, Dannhardt G. Eur. J. Med. Chem. 2002; 37: 953
- 1g Periyasami G, Raghunathan R, Surendiran G, Mathivanan N. Bioorg. Med. Chem. Lett. 2008; 18: 2342
- 1h Laufer SA, Zimmermann W, Ruff KJ. J. Med. Chem. 2004; 47: 6311
- 2 Caine B. Science 1993; 260: 1814
- 3 Carlson J. Neurol. Transm. 1993; 94: 11
- 4 Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC. Nature (London) 1990; 347: 147
- 5 Wilner P. Clin. Neuropharm. 1985; 18: 549
- 6a Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
- 6b Harwood LM, Vickers RJ In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. Wiley; New York: 2003: 169
- 7a Broggini G, Zecchi G. Synthesis 1999; 905
- 7b Novikov MS, Khlebnikov AF, Besidina OV, Kastokov RR. Tetrahedron Lett. 2001; 42: 533
- 7c Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
- 7d Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
- 7e Appukkuttan P, Mehta VP, Van der Eycken E. Chem. Soc. Rev. 2010; 39: 1467
- 8a Vedejs E, Piotrowski DW, Tucci FC. J. Org. Chem. 2000; 65: 5498
- 8b Pandey G, Sahoo AK, Bagul TD. Org. Lett. 2000; 2: 2299
- 8c Vedejs E, Klapers A, Naidu BN, Piotrowski DW, Tucci FC. J. Am. Chem. Soc. 2000; 122: 5401
- 8d Coldham I, Crapnellk M, Moseley JD, Rabot R. J. Chem. Soc., Perkin Trans. 1 2001; 1758
- 9a Georg GI. The Organic Chemistry of β-Lactams . VCH; Weinheim: 1992. ; and references cited therein
- 9b Thomas RC In Recent Progress in the Chemical Synthesis of Antibiotics . Springer Verlag; Berlin/Heidelberg: 1990: 533
- 9c Georg GI In Studies in Natural Products Synthesis . Vol. 4. Atta-ur-Rahman Elsevier; Amsterdam: 1989: 431
- 9d Bodurow Ch, Carr MA. Tetrahedron Lett. 1989; 30: 4081
- 9e Georg GI, Kant J. J. Org. Chem. 1988; 53: 692
- 9f Mastalerz H, Menard M, Vinet V, Desiderio J, Fung-Tomc T, Kessler R, Tsai Y. J. Med. Chem. 1988; 31: 1190
- 10 Guillon CD, Koppel GA, Brownstein MJ, Chaney MO, Ferris CF, Lu SF, Fabio KM, Miller MJ, Heindel ND, Hunden DC, Cooper RD. G, Kaldox SW, Skelton JJ, Dressman BA, Clay MP, Steinberg MI, Bruns RF. Bioorg. Med. Chem. 2007; 15: 2054
- 11a Sperka T, Pitlik J, Bagossia P, Tozsera J. Bioorg. Med. Chem. Lett. 2005; 15: 3086
- 11b Kumar A, Rajput CS. Eur. J. Med. Chem. 2009; 44: 83
- 11c Bhati SK, Kumar A. Eur. J. Med. Chem. 2008; 43: 2323
- 11d Kumar A, Rajput CS, Bhati SK. Bioorg. Med. Chem. 2007; 15: 3089
- 12a D’hooghe M, Dekeukeleire S, Leemans E, De Kimpe N. Pure Appl. Chem. 2010; 82: 1749
- 12b Rao SN, O’Ferrall RA. M. J. Org. Chem. 1990; 55: 3244
- 12c Van Brabandt W, De Kimpe N. J. Org. Chem. 2005; 70: 3369
- 12d Dekeukeleire S, D’hooghe M, De Kimpe N. J. Org. Chem. 2009; 74: 1644
- 12e Mollet K, D’hooghe M, De Kimpe N. J. Org. Chem. 2011; 76: 264
- 12f D’hooghe M, Mollet K, Dekeukeleire S, De Kimpe N. Org. Biomol. Chem. 2010; 8: 607
- 12g Fodor L, Csomós P, Csámpai A, Sohár P. Synthesis 2010; 2943
- 12h Csomós P, Fodor L, Csámpai A, Sohár P. Tetrahedron 2010; 66: 3207
- 12i Fodor L, Csomós P, Csámpai A, Sohár P. Tetrahedron 2012; 68: 851
- 13a Ojima I, Shimizu N, Qiu X, Chen HJ. C, Nakahashi K. Bull. Soc. Chim. Fr. 1987; 649
- 13b Ojima I. Acc. Chem. Res. 1995; 28: 383
- 13c Ojima I In Advances in Asymmetric Synthesis . Hassner A. JAI; Greenwich: 1995: 95
- 14a Ojima I, Delaloge F. Chem. Soc. Rev. 1997; 26: 377
- 14b Deshmukh AR, Bhawal BM, Krishnaswamy D, Govande VV, Shinkre BA, Jayanthi A. Curr. Med. Chem. 2004; 11: 1889
- 15a Alcaide B, Almendros P. Curr. Med. Chem. 2004; 11: 1921
- 15b Palomo C, Aizpurua JM, Ganboa I, Oiardide M. Curr. Med. Chem. 2004; 11: 1837
- 16a Arumugam N, Jayashankaran J, Rathnadurga R, Raghunathan R. Tetrahedron 2005; 61: 8512
- 16b Arumugam N, Raghunathan R. Tetrahedron 2010; 66: 969
- 16c Arumugam N, Raghunathan R, Shanmugaiah V, Mathivanan N. Bioorg. Med. Chem. Lett. 2010; 20: 3698
- 16d Arumugam N, Periyasami G, Raghunathan R, Kamalraj S, Muthumary J. Eur. J. Med. Chem. 2011; 46: 600
- 17a Basavaiah D, Aravindu K. Org. Lett. 2007; 9: 2453
- 17b Reiser U, Jauch J. Synlett 2001; 90
- 17c Basavaiah D, Satyanarayana T. Org. Lett. 2001; 3: 3619
- 18a Kathiravan S, Ramesh E, Raghunathan R. Tetrahedron Lett. 2009; 50: 2389
- 18b Kathiravan S, Raghunathan R. Synlett 2010; 952
- 18c Kathiravan S, Vijayarajan D, Raghunathan R. Tetrahedron Lett. 2010; 51: 3065
- 18d Rajesh R, Raghunathan R. Eur. J. Org. Chem. 2013; 2597
- 18e Kathiravan S, Raghunathan R. Tetrahedron Lett. 2009; 50: 6116
- 18f Jayashankaran J, Rathnadurga R, Sivaguru M, Raghunathan R. Tetrahedron Lett. 2006; 47: 5535
- 19 To a solution of the β-lactam-derived Baylis–Hillman alcohol 1a or 1b (1 equiv) in anhydrous CH2Cl2 (20 mL), kept at 0 °C, was added Boc2O (1.5 equiv) and DMAP (10 mol%). The solution was stirred for 2 h. Upon completion of the reaction, the crude mixture was purified by column chromatography immediately (hexane–EtOAc). Compound 3a: Yield: 83%; colorless solid; mp 96–98 °C; IR (KBr): 1680, 1715, 1719 cm–1; 1H NMR (300 MHz, CDCl3): δ = 1.37 (s, 9 H), 3.79 (s,3 H), 3.80 (s, 3 H), 4.37–4.38 (t, J = 1.8, 2.1 Hz, 1 H), 4.51–4.52 (d, J = 2.1 Hz, 1 H), 6.12–6.14 (d, J = 4.8 Hz, 2 H), 6.47 (s, 1 H), 6.90–6.93 (d, J = 7.2 Hz, 2 H), 7.18–7.46 (m, 5 H), 7.47–7.49 (t, J = 2.4, 4.5 Hz, 2 H); 13C NMR (75 MHz, CDCl3): δ = 27.5, 52.4, 54.4, 55.4, 60.8, 69.1, 83.2, 114.5, 118.9, 127.2, 127.5, 128.9, 130.2, 134.7, 136.4, 151.8, 156.4, 164.6, 165.3.
- 20 To a solution of salicylaldehyde 4a or 4b (1.0 equiv), Cs2CO3 (2.0 equiv) in MeCN (25 mL) under a nitrogen atmosphere, was added Boc-protected Baylis–Hillman adduct 3a or 3b (1.0 equiv). After stirring at room temperature, the reaction mixture was filtered over Celite and the organic layer was evaporated, diluted with CH2Cl2 (3 × 10 mL) and washed with water followed by brine. The organic layer was separated, dried, and the product was purified by column chromatography (hexane–EtOAc, 7:3). Compound 5a: Yield: 72%; pale-brown solid; mp 106–108 °C; IR (KBr): 1684, 1713, 1718 cm–1; 1H NMR (300 MHz, CDCl3): δ = 3.79 (s, 3 H), 3.83 (s, 3 H), 4.31–4.32 (d, J = 2.4 Hz, 1 H), 4.93 (s, 2 H), 4.95–4.96 (d, J = 2.4 Hz, 1 H), 6.84–7.51 (m, 13 H), 7.75–7.78 (d, J = 1.5 Hz, 1 H), 10.18 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 52.7, 55.5, 57.9, 61.9, 62.6, 112.9, 114.6, 118.1, 121.6, 125.1, 127.3, 128.3, 128.7, 129.2, 130.8, 131.0, 133.4, 135.8, 145.2, 156.6, 160.2, 163.6, 165.5, 188.9; MS: m/z = 471.56 [M]+.
- 21 Synthesis of Angularly Fused Chromeno[4,3-b]pyrrolidine/pyrrolizidine/thiazolidine Derivatives; General Procedure: A solution of β-lactam-substituted O-allyl salicylaldehyde derivative 5a or 5b (1 mmol) and sarcosine (7) or proline (10) or thiazolidine-4-carboxylic acid (13) (1.2 mmol) in acetonitrile (10 mL) was heated at reflux until completion of the reaction (reaction monitored by TLC). The solvent was removed under vacuum and the crude product was subjected to column chromatography on silica gel (100–200 mesh; petroleum ether–ethyl acetate, 7:3).
- 22 Representative spectral data of the products. Compound 8b: Yield: 85%; colorless solid; mp 161–163 °C; IR (KBr): 1701, 1714 cm–1; 1H NMR (300 MHz, CDCl3): δ = 2.45 (s, 3 H), 2.52–2.58 (t, J = 9.3 Hz, 1 H), 2.76 (s, 3 H), 2.79–2.84 (m, 1 H), 2.90–2.96 (t, J = 8.1, 9.0 Hz, 1 H), 3.63 (s, 1 H), 3.82 (s, 3 H), 4.09–4.13 (d, J = 10.2 Hz, 1 H), 4.22–4.23 (d, J = 1.8 Hz, 1 H), 4.40–4.43 (d, J = 10.2 Hz, 1 H), 4.55–4.57 (d, J = 2.1 Hz, 1 H), 6.81–6.84 (d, J = 8.1 Hz, 1 H), 6.91–6.96 (m, 3 H), 7.15–7.18 (m, 1 H), 7.20–7.24 (m, 3 H), 7.25–7.26 (m, 2 H), 7.29–7.35 (m, 2 H), 7.40–7.43 (m, 2 H); 13C NMR (75 MHz, CDCl3): δ = 39.5, 41.3, 51.8, 54.6, 55.5, 57.0, 59.5, 65.0, 69.6, 114.8, 116.9, 119.3, 119.8, 120.6, 128.0, 128.1, 128.8, 129.1, 129.7, 131.3, 134.4, 154.0, 156.8, 164.4, 170.9; MS: m/z = 514.62 [M]+. Anal. Calcd for C30H30N2O6: C, 70.02; H, 5.88; N, 5.44. Found: C, 70.06; H, 5.83; N, 5.40. Compound 11b: Yield: 79%; colorless solid; mp 186–187 °C; IR (KBr): 1689, 1718 cm–1; 1H NMR (300 MHz, CDCl3): δ = 1.06–1.19 (m, 1 H), 1.80–1.95 (m, 2 H), 1.99–2.04 (m, 1 H), 2.89–2.97 (m, 1 H), 3.12–3.16 (m, 1 H), 3.18–3.23 (m, 1 H), 3.70 (s, 3 H), 3.82 (s, 3 H), 4.21–4.24 (d, J = 10.8 Hz, 1 H), 4.31–4.34 (d, J = 10.5 Hz, 1 H), 4.10 (s, 1 H), 4.35 (s, 1 H), 4.68–4.69 (t, J = 2.4, 2.1 Hz, 1 H), 6.81–6.84 (d, J = 7.8 Hz, 1 H), 6.90–6.95 (m, 3 H), 7.13–7.19 (m, 2 H), 7.30–7.36 (m, 5 H), 7.39–7.43 (m, 2 H); 13C NMR (75 MHz, CDCl3): δ = 28.3, 33.5, 49.4, 52.8, 54.2, 55.4, 55.5, 56.7, 58.4, 63.0, 64.86, 65.3, 114.7, 117.0, 119.2, 121.2, 122.8, 127.8, 128.2, 128.8, 129.2, 129.3, 129.5, 133.8, 152.7, 156.6, 164.4, 172.6; MS: m/z = 540.66 [M]+. Anal. Calcd for C32H32N2O6: C, 71.09; H, 5.97; N, 5.18. Found: C, 71.16; H, 5.92; N, 5.22. Compound 14a: Yield: 81%; colorless solid; mp 177–179 °C; IR (KBr): 1692, 1717 cm–1; 1H NMR (300 MHz, CDCl3): δ = 2.42–2.48 (d, J = 6.0 Hz, 1 H), 2.87–2.93 (dd, J = 7.8 Hz, 1 H), 3.22–3.24 (t, J = 2.7, 3.9 Hz, 1 H), 3.65–3.72 (m, 1 H), 3.69 (s, 3 H), 3.82 (s, 3 H), 4.21–4.22 (d, J = 1.8 Hz, 1 H), 4.37–4.40 (d, J = 10.81 Hz, 1 H), 4.52–4.56 (d, J = 11.4 Hz, 1 H), 4.65–4.67 (t, J = 2.7, 2.4 Hz, 1 H), 6.83–6.85 (d, J = 8.1 Hz, 1 H), 6.93–6.98 (m, 3 H), 7.14–7.22 (m, 2 H), 7.32–7.44 (m, 7 H); 13C NMR (75 MHz, CDCl3): δ = 39.5, 48.9, 51.6, 52.9, 55.5, 56.3, 57.7, 58.2, 58.6, 65.8, 66.0, 114.9, 116.9, 119.5, 120.3, 121.1, 127.9, 128.3, 128.9, 129.4, 129.5, 130.4, 133.5, 153.7, 156.9, 164.5, 172.5; MS: m/z = 542.67 [M]+; Anal. Calcd for C31H30N2O5S: C, 68.61; H, 5.57; N, 5.16. Found: C, 68.69; H, 5.52; N, 5.11.
- 23 The structure of compound 9a was confirmed by single-crystal X-ray data. These data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-929940. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.