RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2013; 24(17): 2274-2278
DOI: 10.1055/s-0033-1339868
DOI: 10.1055/s-0033-1339868
letter
Efficient Synthesis of Carboxylic Esters via Palladium(II)-Catalyzed Direct Alkoxycarbonylation of Arenes with CO and Alcohols
Weitere Informationen
Publikationsverlauf
Received: 26. Juli 2013
Accepted after revision: 28. August 2013
Publikationsdatum:
09. Oktober 2013 (online)

Abstract
An efficient palladium(II)-catalyzed procedure for the alkoxycarbonylation of arenes and heteroarenes with atmospheric pressure carbon monoxide and alcohols was developed to synthesize aryl carboxylic esters.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
- 1b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
- 2a Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
- 2b Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
- 2c Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
- 2d Barnard CF. J. Organometallics 2008; 27: 5402
- 2e Munday RH, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 2754
- 2f Ben-David Y, Portnoy M, Milstein D. J. Am. Chem. Soc. 1989; 111: 8742
- 2g Zhao Y, Jin L, Li P, Lei A. J. Am. Chem. Soc. 2008; 130: 9429
- 2h Liu Q, Li G, He J, Liu J, Li P, Lei A. Angew. Chem. Int. Ed. 2010; 49: 3371
- 3a Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 3b Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 3c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 3d Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 3e Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
- 3f Zhao D, You J, Hu C. Chem. Eur. J. 2011; 17: 5466
- 4a Ref. 2a.
- 4b Chatani N, Inoue S, Yokota K, Tatamidani H, Fukumoto Y. Pure Appl. Chem. 2010; 82: 1443
- 4c Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
- 5 Fujiwara Y, Kawauchi T, Taniguchi H. J. Chem. Soc., Chem. Commun. 1980; 220
- 6 Orito K, Horibata A, Nakamura T, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Tokuda M. J. Am. Chem. Soc. 2004; 126: 14342
- 7 Giri R, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14082
- 8a Houlden CE, Hutchby M, Bailey CD, Ford JG, Tyler SN. G, Gagné MR, Lloyd-Jones GC, Booker-Milburn KI. Angew. Chem. Int. Ed. 2009; 48: 1830
- 8b Giri R, Lam JK, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 686
- 8c Yoo EJ, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 17378
- 8d Haffemayer B, Gulias M, Gaunt MJ. Chem. Sci. 2011; 2: 312
- 8e Wrigglesworth JW, Cox B, Lloyd-Jones GC, Booker-Milburn KI. Org. Lett. 2011; 13: 5326
- 8f López B, Rodriguez A, Santos D, Albert J, Ariza X, Garcia J, Granell J. Chem. Commun. 2011; 47: 1054
- 8g Guan ZH, Chen M, Ren Z.-H. J. Am. Chem. Soc. 2012; 134: 17490
- 8h Ferguson J, Zeng F, Alwis N, Alper H. Org. Lett. 2013; 15: 1998
- 8i Liang Z, Zhang J, Liu Z, Wang K, Zhang Y. Tetrahedron 2013; 69: 6519
- 8j Rajeshkumar V, Lee T, Chuang S.-C. Org. Lett. 2013; 15: 1468
- 8k Lu Y, Leow D, Wang X.-S, Engle KM, Yu J.-Q. Chem. Sci. 2011; 2: 967
- 8l Li H, Cai G.-X, Shi Z.-J. Dalton Trans. 2010; 39: 10442
- 8m Zhang H, Liu D, Chen C.-Y, Liu C, Lei A.-W. Chem. Eur. J. 2011; 17: 9581
- 8n Xie P, Xie Y, Qian B, Zhou H, Xia C, Huang H. J. Am. Chem. Soc. 2012; 134: 9902
- 8o Ferguson J, Zeng F, Alper H. Org. Lett. 2012; 14: 5602
- 8p Zhang H, Shi R, Gan P, Liu C, Ding A, Wang Q, Lei A. Angew. Chem. Int. Ed. 2012; 51: 5204
- 8q Zeng F, Alper H. Org. Lett. 2013; 15: 2034
- 9a Inoue S, Shiota H, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2009; 131: 6898
- 9b Du Y, Hyster TK, Rovis T. Chem. Commun. 2011; 47: 12074
- 9c Hasegawa N, Charra V, Inoue S, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 8070
- 9d Chatani N, Fukuyama T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 1996; 118: 493
- 9e Fukuyama T, Chatani N, Tatsumi J, Kakiuchi F, Murai S. J. Am. Chem. Soc. 1998; 120: 11522
- 9f Chatani N, Asaumi T, Ikeda T, Yorimitsu S, Ishii Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2000; 122: 12882
- 9g Tlili A, Schranck J, Pospech J, Neumann H, Beller M. Angew. Chem. Int. Ed. 2013; 52: 6293
- 9h Guan Z.-H, Ren Z.-H, Spinella SM, Yu S, Liang Y.-M, Zhang X.-M. J. Am. Chem. Soc. 2009; 131: 729
- 9i Lang R, Wu J, Shi L, Xia C, Li F. Chem. Commun. 2011; 47: 12553
- 10a Chen X, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 12634
- 10b Hull KL, Lanni EL, Sanford MS. J. Am. Chem. Soc. 2006; 128: 14047
- 10c Li Y, Li B.-J, Wang W.-H, Huang W.-P, Zhang X.-S, Chen K, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 2115
- 10d Deng G, Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 6278
- 10e Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
- 10f Tsai AS, Tauchert ME, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2011; 133: 1248
- 10g Li W, Arockiam PB, Fischmeister C, Bruneau C, Dixneuf PH. Green Chem. 2011; 13: 2315
- 10h Chen Q, Ilies L, Yoshikai N, Nakamura E. Org. Lett. 2011; 13: 3232
- 10i Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
- 10j Li B, Wu Z.-H, Gu Y.-F, Sun C.-L, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 1109
- 10k Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882
- 10l Morimoto K, Hirano K, Satoh T, Miura M. Org. Lett. 2010; 12: 2068
- 10m Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
- 10n Kozhushkov SI, Yufit DS, Ackermann L. Org. Lett. 2008; 10: 3409
- 10o Feng C.-G, Ye M, Xiao K.-J, Li S, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 9322
- 10p Yan Y, Feng P, Zheng Q.-Z, Liang Y.-F, Lu J.-F, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2013; 52: 5827; and references therein
- 11 General Procedure for Alkoxycarbonylation of 1 with CO and Alcohols A mixture of substrate 1 (0.2 mmol), Pd(OAc)2 (10 mmol%), CuBr2 (0.2 mmol), NaOAc (0.3 mmol), alcohol (3.0 mmol), and dioxane (2.0 mL) in a 50 mL Schlenk tube (purged with CO/O2 = 4:1) was heated at 100 °C for 24 h. The reaction mixture was cooled to r.t. and concentrated in vacuo. The residue was purified by chromatography on silica gel to afford the desired product 2. Pentyl 4-Methyl-2-(pyridin-2-yl)benzoate (2b) Compound 2b was prepared in 63% yield according to the general procedure as an oil. 1H NMR (400 MHz, CDCl3): δ = 8.64 (d, J = 4.8 Hz, 1 H), 7.77 (d, J = 7.6 Hz, 1 H), 7.72 (d, J = 7.6 Hz, 1 H), 7.41 (d, J = 7.6 Hz, 1 H), 7.34 (s, 1 H), 7.27 (d, J = 7.6 Hz, 2 H), 4.04 (t, J = 6.8 Hz, 2 H), 2.43 (s, 3 H), 1.41–1.35 (m, 2 H), 1.25–1.19 (m, 2 H), 1.11–1.04 (m, 2 H), 0.83 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.6, 159.2, 149.0, 141.6, 141.2, 135.9, 130.7, 130.1, 128.9, 123.0, 121.9, 55.0, 28.0, 22.3, 21.4, 13.9. HRMS (EI-TOF): m/z calcd for C18H21NO2 [M+]: 283.1572; found: 283.1573.
- 12 Macgregor SA, Neave GW. Organometallics 2003; 22: 4547
- 13 While this manuscript was under revision, a Pd-catalyzed direct C–H activation–carbonylation of 2-arylphenols was reported: Luo S, Luo F.-X, Zhang X.-S, Shi Z.-J. Angew. Chem. Int. Ed. 2013; 52: 10598
For pioneering work, see:
For selected recent reviews and leading references on Pd-catalyzed carbonylation reactions, see:
For selected recent reviews, see:
For selected recent reviews on C–H bond carbonylation, see:
For selected examples of Pd-catalyzed C–H bond carbonylation using other directing groups, see:
For selected examples of Rh- or Ru-catalyzed C–H bond carbonylation, see:
For selected pyridine-directed C–H activation, see: