Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(20): 2683-2686
DOI: 10.1055/s-0033-1340013
DOI: 10.1055/s-0033-1340013
letter
One-Pot Synthesis of 3-Methylflavones and Their Transformation into (E)-3-Styrylflavones via Wittig Reactions
Further Information
Publication History
Received: 27 August 2013
Accepted after revision: 18 September 2013
Publication Date:
05 November 2013 (online)
Abstract
An efficient one-pot synthesis of 3-methylflavone derivatives is established. Furthermore, their transformation into phosphorus ylides, which are then used in the diastereoselective synthesis of (E)-styrylflavones through Wittig reactions, is also studied.
-
References and Notes
- 1 Andersen ØM, Markham KR. Flavonoids: Chemistry, Biochemistry and Applications . Taylor & Francis; Boca Raton: 2006
- 2 Birt DF, Hendrich S, Wang W. Pharmacol. Ther. 2001; 90: 157
- 3 Verma AK, Pratap R. Nat. Prod. Rep. 2010; 27: 1571
- 4a Cummings J, Double JA, Bibby MC, Farmer P, Evans S, Kerr DJ, Kaye SB, Smyth JF. Cancer Res. 1989; 49: 3587
- 4b Cárdenas M, Marder M, Blank VC, Roguin LP. Bioorg. Med. Chem. 2006; 14: 2966
- 4c Lin Y.-P, Hsu F.-L, Chen C.-S, Chern J.-W, Lee M.-H. Phytochemistry 2007; 68: 1189
- 4d Zhu JT. T, Choi RC. Y, Chu GK. Y, Cheung AW. H, Gao QT, Li J, Jiang ZY, Dong TT. X, Tsim KW. K. J. Agric. Food Chem. 2007; 55: 2438
- 5a Park KY, Lee S.-H, Min B.-K, Lee K.-S, Choi J.-S, Chung SR, Min KR, Kim Y. Planta Med. 1999; 65: 457
- 5b Nagaoka T, Banskota AH, Tezuka Y, Midorikawa K, Matsushige K, Kadota S. Biol. Pharm. Bull. 2003; 26: 487
- 5c Moscatelli V, Hnatyszyn O, Acevedo C, Megias J, Alcaraz MJ, Ferrana G. Planta Med. 2006; 72: 72
- 6a Beyer G, Melzig MF. Planta Med. 2003; 69: 1125
- 6b Vaya J, Mahmood S, Goldblum A, Aviram M, Volkova N, Shaalan A, Musa R, Tamir S. Phytochemistry 2003; 62: 89
- 7 Painuly P, Tandon JS. Phytochemistry 1983; 22: 243
- 8 Seixas RS. G. R, Pinto DC. G. A, Silva AM. S, Cavaleiro JA. S. Aust. J. Chem. 2008; 61: 718
- 9 Filipe P, Silva AM. S, Seixas RS. G. R, Pinto DC. G. A, Santos A, Patterson LK, Silva JN, Cavaleiro JA. S, Freitas JP, Mazière J.-C, Santus R, Morlière P. Biochem. Pharmacol. 2009; 77: 957
- 10 Jayashree BS, Alam A, Nayak Y, Kumar DV. Med. Chem. Res. 2012; 21: 1991
- 11 Vaz PA. A. M, Pinto DC. G. A, Rocha DH. A, Silva AM. S, Cavaleiro JA. S. Synlett 2012; 23: 2353
- 12 Heller ST, Natarajan SR. Org. Lett. 2006; 8: 2675
- 13 2-Propionylphenyl 4-Methoxybenzoate (4) Yield: 46 mg (15%). 1H NMR (300.13 MHz, CDCl3): δ = 1.11 (t, J = 7.2 Hz, 3 H, H-3), 2.92 (q, J = 7.2 Hz, 2 H, H-2), 3.90 (s, 3 H, 4′′-OCH 3), 7.00 (d, J = 9.0 Hz, 2 H, H-3′′,5′′), 7.22 (dd, J = 1.3, 8.1 Hz, 1 H, H-3′), 7.34 (ddd, J = 1.3, 7.0, 8.1 Hz, 1 H, H-5′), 7.55 (ddd, J = 1.3, 7.0, 8.1 Hz, 1 H, H-4′), 7.81 (dd, J = 1.3, 8.1 Hz, 1 H, H-6′), 8.16 (d, J = 9.0 Hz, 2 H, H-2′′,6′′). 1-(2-Hydroxyphenyl)-3-(4-methoxyphenyl)-2-methyl-propane-1,3-dione (5) Yield: 137 mg (30%). 1H NMR (300.13 MHz, CDCl3): δ = 1.60 (d, J = 7.0 Hz, 3 H, 2-CH 3), 3.87 (s, 3 H, 4′′-OCH 3), 5.23 (q, J = 7.0 Hz, 1 H, H-2), 6.86 (ddd, J = 1.2, 7.2, 8.1 Hz, 1 H, H-5′), 6.95 (d, J = 8.1 Hz, 2 H, H-3′′,5′′), 7.00 (dd, J = 1.2, 8.1 Hz, 1 H, H-3′), 7.46 (ddd, J = 1.2, 7.2, 8.1 Hz, 1 H, H-4′), 7.69 (dd, J = 1.2, 8.1 Hz, 1 H, H-6′), 7.95 (d, J = 8.1 Hz, 2 H, H-2′′,6′′), 12.09 (s, 1 H, 2-OH). 2-[3-(4-Methoxyphenyl)-2-methyl-3-oxo-propanoyl]-phenyl 4-Methoxybenzoate (6) Yield: 77 mg (25%). 1H NMR (300.13 MHz, CDCl3): δ = 1.48 (d, J = 7.0 Hz, 3 H, 2-CH 3), 3.83 (s, 3 H, 4′′-OCH 3), 3.88 (s, 3 H, 4′′′-OCH 3), 5.07 (q, J = 7.0 Hz, 1 H, H-2), 6.80 (d, J = 9.0 Hz, 2 H, H-3′′,5′′), 6.93 (d, J = 9.0 Hz, 2 H, H-3′′′,5′′′), 7.20 (dd, J = 1.1, 8.1 Hz, 1 H, H-6′), 7.32 (ddd, J = 1.1, 7.0, 8.1 Hz, 1 H, H-5′), 7.53 (ddd, J = 1.1, 7.0, 8.1 Hz, 1 H, H-4′), 7.77 (dd, J = 1.1, 8.1 Hz, 1 H, H-3′), 7.81 (d, J = 9.0 Hz, 2 H, H-2′′,6′′), 8.04 (d, J = 9.0 Hz, 2 H, H-2′′′,6′′′).
- 14 3-Methylflavones 3a–d, 8a,b; General Procedure 2′-Hydroxypropiophenone (1) (0.15 mL, 1.09 mmol) was dissolved in anhydrous toluene (5 mL) in a screw-cap vial, equipped with a magnetic stir bar and sealed with a septum. The solution was cooled to 0 °C under N2 and LiHMDS (5.14 mL in THF, 5.13 mmol) was added quickly via a syringe. The solution was stirred for approximately 30 min before the addition of aroyl chloride 2a–d (1.42 mmol) in one portion. The mixture was removed from the ice-bath and stirred at r.t. for the appropriate period of time (Table 1). HCl (4 mL, 37%) was added and the resulting solution stirred at r.t. for the requisite amount of time (Table 1). H2O (50 mL) and ice (30 g) were added and the mixture was extracted with EtOAc (3 × 30 mL). The organic layer was dried over Na2SO4, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (gradient: PE→PE–EtOAc, 4:1). After solvent evaporation, the expected 3-methylflavones 3a–d and 8a,b were obtained in very good yields (see Table 1).
- 15 3-Methyl-5,7,4′-trimethoxyflavone (8b) Yield: 110 mg (31%); white powder; mp 188–190 °C. 1H NMR (500.13 MHz, CDCl3): δ = 2.10 (s, 3 H, 3-CH 3), 3.87 (s, 3 H, 4′-OCH 3), 3.88 (s, 3 H, 5-OCH 3), 3.95 (s, 3 H, 7-OCH 3), 6.34 (d, J = 2.3 Hz, 1 H, H-6), 6.44 (d, J = 2.3 Hz, 1 H, H-8), 7.01 (d, J = 6.9 Hz, 2 H, H-3′,5′), 7.58 (d, J = 6.9 Hz, 2 H, H-2′,6′). 13C NMR (75.47 MHz, CDCl3 ): δ = 11.6 (3-CH3), 55.4 (5-OCH3), 55.6 (4′-OCH3), 56.2 (7-OCH3), 92.2 (C-8), 95.7 (C-6), 108.0 (C-4a), 113.7 (C-3′,5′), 118.5 (C-3), 125.7 (C-1′), 130.4 (C-2′,6′), 158.1 (C-2), 159.6 (C-8a), 160.7 (C-7), 160.8 (C-4′), 163.6 (C-5), 177.8 (C-4). MS (ESI): m/z (%) = 327 (100) [M + H]+, 349 (8) [M + Na]+. HRMS (EI): m/z calcd for C19H18O5: 326.1154; found: 326.1153.
- 16 Aoki S, Matsuo Y, Ogura S, Ohwada H, Hisamatsu Y, Moromizato S, Shiro M, Kitamura M. Inorg. Chem. 2011; 50: 806
- 17 3-Bromomethylflavones 9a–d; General Procedure To a solution of the appropriate 3-methylflavone 3a–d (0.17 mmol) in CCl4 (40 mL) was added benzoyl peroxide (8.2 mg, 0.033 mmol) and NBS (39 mg, 0.22 mmol). The mixture was heated at reflux temperature under an N2 atm for 6–24 h (depending on the substituent). The solvent was evaporated and the residue was taken in CHCl3 (40 mL) and the obtained solution washed with H2O (3 × 20 mL). The organic layer was concentrated and purified by thin-layer chromatography (CH2Cl2–hexane, 8:2) affording 3-bromomethylflavones 9a–d (9a, 87%; 9b, 50%; 9c, 50%; 9d, 60%).
- 18 3-Bromomethyl-4′-methoxyflavone (9b) Yield: 30 mg (50%); yellow powder; mp 161–163 °C. 1H NMR (500.13 MHz, CDCl3): δ = 3.90 (s, 3 H, 4′-OCH 3), 4.67 (s, 2 H, 3-CH 2), 7.05 (d, J = 8.9 Hz, 2 H, H-3′,5′), 7.42 (br dd, J = 7.0, 8.0 Hz, 1 H, H-6), 7.49 (br d, J = 8.0 Hz, 1 H, H-8), 7.68 (ddd, J = 1.6, 7.0, 8.0 Hz, 1 H, H-7), 7.74 (d, J = 8.9 Hz, 2 H, H-2′,6′), 8.24 (dd, J = 1.6, 8.0 Hz, 1 H, H-5). 13C NMR (75.47 MHz, CDCl3): δ = 30.9 (3-CH2), 55.5 (4′-OCH3), 114.2 (C-3′,5′), 117.9 (C-8), 118.1 (C-3), 122.7 (C-4a), 125.3 (C-6), 126.1 (C-5), 130.0 (C-2′,6′), 130.3 (C-1′), 133.9 (C-7), 156.0 (C-8a), 161.8 (C-4′), 163.8 (C-2), 176.6 (C-4). MS (ESI): m/z (%) = 345 (47) [79Br, M]+, 347 (40) [81Br, M]+, 367 (100) [79Br, M + Na]+, 369 (90) [81Br, M + Na]+. HRMS (ESI): m/z calcd for C17H13BrO3: 345.0133; found: 345.0142.
- 19 Das J, Ghosh S. Tetrahedron Lett. 2011; 52: 7189
- 20 3-(Bromotriphenylphosphoranyl)methylflavones 10a–d; General Procedure To a solution of the appropriate 3-bromomethylflavone 9a–d (0.06 mmol) in anhydrous toluene (10 mL) was added PPh3 (16 mg, 0.06 mmol). The mixture was heated at reflux temperature under an N2 atm for 24 h, after which the solvent was evaporated to give the corresponding 3-(bromotriphenyl-phosphoranyl)methylflavone 10a–d (10a, 67%; 10b, 58%; 10c, 64%; 10d, 60%).
- 21 3-(Bromotriphenylphosphoranyl)methyl-4′-chloro-flavone (10c) Yield: 21 mg (64%); white powder; mp 282–284 °C. 1H NMR (300.13 MHz, CDCl3): δ = 5.33 (d, J = 13.8 Hz, 2 H, 3-CH 2), 7.34 (ddd, J = 1.3, 7.0, 8.0 Hz, 1 H, H-6), 7.43 (br d, J = 8.0 Hz, 1 H, H-8), 7.46–7.52 (m, 8 H, PPh3), 7.61–7.71 (m, 10 H, H-2′,6′, H-7 and 7 H of PPh3), 7.77 (dd, J = 1.3, 8.0 Hz, 1 H, H-5), 7.87 (d, J = 9.0 Hz, 2 H, H-3′,5′). 13C NMR (75.47 MHz, CDCl3): δ = 23.6 (d, J = 50.0 Hz, 3-CH2), 111.8 (C-3), 118.0 (C-8), 119.1 (C-4a), 121.3 (C-1′), 125.4 (C-5), 125.7 (C-6), 129.5 (C-1 of PPh3), 129.7 (C-3,5 of PPh3), 129.9 (C-4 of PPh3), 130.6 (C-3′,5′), 133.9 (C-2,6 of PPh3), 134.5 (C-7), 134.6 (C-2′,6′), 137.8 (C-4′), 155.6 (C-8a), 163.7 (C-2), 176.4 (C-4). MS (ESI): m/z (%) = 531 (100) [35Cl, M]+, 532 (56) [35Cl, M + H]+, 533 (40) [37Cl, M]+. HRMS (ESI): m/z calcd for C34H25ClO2P: 531.1264; found: 531.1275.
- 22 Sandulache A, Silva AM. S, Pinto DC. G. A, Almeida LM. P. M, Cavaleiro JA. S. New J. Chem. 2003; 27: 1592
- 23 Silva VL. M, Silva AM. S, Pinto CD. G. A, Cavaleiro JA. S, Vasas A, Patonay T. Monatsh. Chem. 2008; 139: 1307
- 24 (E)-3-Styrylflavones 11a–f; General Procedure To a suspension of the appropriate 3-(bromotriphenyl-phosphoranyl)methylflavone 10a–d (0.022 mmol) in THF (20 mL) was added NaH (0.5 mg, 0.022 mmol) and the mixture was stirred for the appropriate amount of time (Table 2). The appearance of coloration and the disappearance of the suspension due to the phosphonium salt was indicative of ylide formation. The appropriate benzaldehyde (2.3 μL, 0.022 mmol) was added and the mixture was stirred for the time given in Table 2. The solvent was evaporated and the residue was taken in CH2Cl2 (20 mL) and then washed with H2O (3 × 20 mL). The organic layer was dried over anhydrous Na2SO4, filtered, concentrated and purified by thin-layer chromatography (CH2Cl2) to give the desired (E)-3-styrylflavones 11a–f (see yields in Table 2) and 3-methylflavones 3a–d (3a, 19%; 3b, 40%; 3c, 28%; 3d, 20%).
- 25 (E)-3-(4-Nitrostyryl)flavone (11d) Yield: 6 mg (67%); orange powder; mp 174–176 °C. 1H NMR (300.13 MHz, CDCl3): δ = 6.72 (d, J = 16.2 Hz, 1 H, H-α), 7.26–7.30 (m, 1 H, H-4′′), 7.33 (t, J = 7.9 Hz, 2 H, H-3′′,5′′), 7.38 (br d, J = 7.9 Hz, 2 H, H-2′′,6′′), 7.48 (ddd, J = 1.7, 7.2, 8.3 Hz, 1 H, H-6), 7.52 (dd, J = 1.7, 7.2 Hz, 1 H, H-8), 7.73 (ddd, J = 1.7, 7.2, 8.3 Hz, 1 H, H-7), 7.95 (d, J = 16.2 Hz, 1 H, H-β), 7.97 (d, J = 9.1 Hz, 2 H, H-2′,6′), 8.33 (dd, J = 1.7, 7.2 Hz, 1 H, H-5), 8.40 (d, J = 9.1 Hz, 2 H, H-3′,5′). 13C NMR (75.47 MHz, CDCl3): δ = 117.8 (C-8), 118.6 (C-α), 118.9 (C-3), 123.4 (C-4a), 123.7 (C-3′,5′), 125.5 (C-6), 126.4 (C-5), 126.6 (C-2′′,6′′), 128.1 (C-4′′), 128.7 (C-3′′,5′′), 130.9 (C-2′,6′), 133.9 (C-7), 136.3 (C-β), 137.5 (C-1′′), 139.2 (C-1′), 148.7 (C-4′), 155.4 (C-8a), 159.6 (C-2), 177.1 (C-4). MS (ESI): m/z (%) = 370 (60) [M + H]+, 392 (99) [M + Na]+. HRMS (ESI): m/z calcd for C23H15NO4: 369.1001; found: 369.1003.
- 26 Rocha DH. A, Pinto DC. G. A, Silva AM. S, Patonay T, Cavaleiro JA. S. Synlett 2012; 23: 559
- 27 Vedejs E. J. Org. Chem. 2004; 69: 5159
- 28 Robiette R, Richardson J, Aggarwal VK, Harvey JN. J. Am. Chem. Soc. 2005; 127: 13468