Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(3): 375-380
DOI: 10.1055/s-0033-1340067
DOI: 10.1055/s-0033-1340067
letter
Synthesis of Spirolactonic C-Sialosides Induced by Samarium Diiodide
Further Information
Publication History
Received: 18 September 2013
Accepted after revision: 01 October 2013
Publication Date:
05 November 2013 (online)

Abstract
A method for the synthesis of spiro-δ-lactonic α-C-sialosides by samarium diiodide mediated cyclization reactions of glycosyl 2-pyridylsulfides or acetates with appropriate carbonyl side chains has been developed.
-
References and Notes
- 1 Biology of Sialic Acids . Rosenberg A. Plenum; New York: 1995
- 2a Schauer R In Carbohydrates in Chemistry and Biology . Vol. 3. Ernst B, Hart GW, Sinaÿ P. Wiley-VHC; Weinheim: 2000: 227
- 2b Angata T, Varki A. Chem. Rev. 2002; 102: 439
- 4a Beau J.-M, Gallagher T. Top. Curr. Chem. 1997; 187: 1
- 4b Du Y, Linhardt RJ, Vlahov IR. Tetrahedron 1998; 54: 9913
- 4c Dondoni A, Marra A. Chem. Rev. 2000; 100: 4395
- 4d Somsák L. Chem. Rev. 2001; 101: 81
- 4e Liu L, McKee M, Postema MH. D. Curr. Org. Chem. 2001; 5: 1133
- 5a Skrydstrup T, Vauzeilles B, Beau J.-M In Carbohydrates in Chemistry and Biology . Vol. 1. Ernst B, Hart GW, Sinaÿ P. Wiley-VCH; Weinheim: 2000: 495
- 5b Beau J.-M, Vauzeilles B, Skrydstrup T In Glycoscience . Vol. 3. Fraser-Reid B, Tatsuta K, Thiem J. Springer; Berlin: 2001: 2679
- 5c Yuan XJ, Linhardt RJ. Curr. Top. Med. Chem. 2005; 5: 1393
- 6a Vlahov IR, Vlahova PI, Linhardt RJ. J. Am. Chem. Soc. 1997; 119: 1480
- 6b Abdallah Z, Doisneau G, Beau J.-M. Angew. Chem. Int. Ed. 2003; 42: 5209
- 7a Mazéas D, Skrydstrup T, Beau J.-M. Angew. Chem., Int. Ed. Engl. 1995; 34: 909
- 7b Miquel N, Doisneau G, Beau J.-M. Angew. Chem. Int. Ed. 2000; 39: 4111
- 8a Hirai G, Watanabe T, Yamaguchi K, Miyagi T, Sodeoka M. J. Am. Chem. Soc. 2007; 129: 15420
- 8b Watanabe T, Hirai G, Kato M, Hashizume D, Miyagi T, Sodeoka M. Org. Lett. 2008; 10: 4167
- 8c Sodeoka M, Hirai G, Watanabe T, Miyagi T. Pure Appl. Chem. 2009; 81: 205
- 9a Malapelle A, Abdallah Z, Doisneau G, Beau J.-M. Angew. Chem. Int. Ed. 2006; 45: 6016
- 9b Malapelle A, Coslovi A, Doisneau G, Beau J.-M. Eur. J. Org. Chem. 2007; 3145
- 9c Papin C, Doisneau G, Beau J.-M. Chem. Eur. J. 2009; 53
- 9d Malapelle A, Abdallah Z, Doisneau G, Beau J.-M. Heterocycles 2009; 77: 1417
- 10a Noel A, Delpech B, Crich D. Org. Lett. 2012; 14: 1342
- 10b Gu ZY, Zhang XT, Zhang JX, Xing GW. Org. Biomol. Chem. 2013; 11: 5017
- 11 Selective N-sialylation to (-sialyl spirohydantoin analogues is also known, see: Zhang D, Ye D, Feng E, Wang J, Shi J, Jiang H, Liu H. J. Org. Chem. 2010; 75: 3552
- 12a Bartoli A, Rodier F, Commeiras L, Parrain J.-L, Chouraqui G. Nat. Prod. Rep. 2011; 28: 763
- 12b Sannigrahi M. Tetrahedron 1999; 55: 9007
- 13 For the synthesis of anomeric spiro γ-butyrolactones, see: Sridhar PR, Seshadri K, Reddy GM. Chem. Commun. 2012; 48: 756
- 14a Norbeck DW, Kramer JB, Lartey PA. J. Org. Chem. 1987; 52: 2174
- 14b Tadanier J, Lee C.-M, Hengeveld J, Rosenbrook WJr, Whittern D, Wideburg N. Carbohydr. Res. 1990; 201: 209
- 15a For SmI2-promoted Reformatsky reaction, see: Namy J.-L, Girard P, Kagan HB. J. Am. Chem. Soc. 1980; 102: 2693
- 15b Molander GA, Etter JB. J. Am. Chem. Soc. 1987; 109: 6556
- 15c Molander GA, Etter JB, Harring LS, Thorel P.-J. J. Am. Chem. Soc. 1991; 113: 8036
- 15d Tabüchi T, Kawamura K, Inanaga J, Yamaguchi M. Tetrahedron Lett. 1986; 27: 3889
- 15e Inanaga J, Yokoyama Y, Handa Y, Yamaguchi M. Tetrahedron Lett. 1991; 32: 6371
- 15f Rudkin IM, Miller LC, Procter D. J. Organomet. Chem. 2008; 34: 19
- 15g Ocampo R, Dolbier WR. Jr. Tetrahedron 2004; 60: 9325
- 16a Molander GA. Chem. Rev. 1992; 92: 29
- 16b Edmonds DJ, Johnston D, Procter DJ. Chem. Rev. 2004; 104: 3371
- 16c Procter DJ, Flowers RA. II, Skrydstrup T. In Organic Synthesis using Samarium Diiodide: A Practical Guide . RSC Publishing; Cambridge: 2009
- 17a Chénedé A, Perrin E, Rekaï ED, Sinaÿ P. Synlett 1994; 420
- 17b Mazéas D, Skrydstrup T, Doumeix O, Beau J.-M. Angew. Chem., Int. Ed. Engl. 1994; 33: 1383
- 17c Skrydstrup T, Mazéas D, Elmouchir M, Doisneau G, Riche C, Chiaroni A, Beau J.-M. Chem. Eur. J. 1997; 3: 1342
- 18 Meindl P, Tuppy H. Monatsh. Chem. 1965; 96: 802
- 19 Selected Spectroscopic Data; Acid 2: 1H NMR (CDCl3, 360 MHz): δ = 8.78 (d, J = 5.2 Hz, 1 H, ArH), 7.81 (t, J = 7.7 Hz, 1 H, ArH), 7.40 (d, J = 7.7 Hz, 1 H, ArH), 7.31 (dd, J = 7.7, 5.2 Hz, 1 H, ArH), 6.59 (d, J NH–H5 = 10.1 Hz, 1 H, NH), 5.37 (ddd, J H4–H3ax = 10.8 Hz, J H4–H5 = 10.1 Hz, J H4–H3eq = 5.4 Hz, 1 H, H-4), 5.34 (dd, J H7–H8 = 8.1 Hz, J H7–H6 = 1.8 Hz, 1 H, H-7), 5.08 (ddd, J H8–H7 = 8.1 Hz, J H8–H9b = 5.5 Hz, J H8–H9a = 2.8 Hz, 1 H, H-8), 4.19 (q, J H5–H6 = J H5–H4 = J H5–NH = 10.1 Hz, 1 H, H-5), 4.09 (dd, J H9a–H9b = 12.2 Hz, J H9a–H8 = 2.8 Hz, 1 H, H-9a), 4.04 (dd, J H6–H5 = 10.1 Hz, J H6–H7 = 1.8 Hz, 1 H, H-6), 3.89 (dd, J H9b–H9a = 12.2 Hz, J H9b–H8 = 5.5 Hz, 1 H, H-9b), 2.88 (dd, J H3eq–H3ax = 12.3 Hz, J H3eq–H4 = 5.4 Hz, 1 H, H-3eq), 2.17, 2.10, 2.07 (s, 3 × 3 H, 3OAc), 2.05 (m, 1 H, H-3ax), 2.04 (s, 3 H, OAc), 1.94 (s, 3 H, NHAc). 13C NMR (CDCl3, 90 MHz): δ = 170.9, 170.6, 170.5, 170.4, 169.9, 169.7 (6C, 6CO), 153.7, 147.3, 139.3, 124.6, 121.8 (5C, 5C-Ar), 85.7 (C-2), 74.8 (C-6), 69.9 (C-4), 68.8 (C-8), 66.8 (C-7), 61.6 (C-9), 49.3 (C-5), 37.8 (C-3), 23.1 (NHAc), 20.7–21.0 (4C, 4OAc). HRMS: m/z calcd for C24H30N2NaO12S: 593.1417; found: 593.1405. Pyridylsulfide 18: 1H NMR (CDCl3, 400 MHz): δ = 8.46 (ddd, J = 4.8, 1.8, 0.9 Hz, 1 H, ArH), 7.67 (dt, J = 7.8, 1.8 Hz, 1 H, ArH), 7.58 (dt, J = 7.8, 0.9 Hz, 1 H, ArH), 7.19 (ddd, J = 7.8, 4.8, 0.9 Hz, 1 H, ArH), 5.56 (d, J NH–H5 = 9.2 Hz, 1 H, NH), 5.32 (dd, J H7–H8 = 8.0 Hz, J H7–H6 = 1.2 Hz, 1 H, H-7), 5.21 (ddd, J H8–H7 = 8.0 Hz, J H8–H9b = 5.2 Hz, J H8–H9a = 2.7 Hz, 1 H, H-8), 4.85 (ddd, J H4–H3ax or H5 = 11.4 Hz, J H4–H5 or H3ax = 10.1 Hz, J H4–H3eq = 4.7 Hz, 1 H, H-4), 4.56–4.50 (m, 1 H, CH2-O), 4.29 (dd, J H9a–H9b = 12.4 Hz, J H9a–H8 = 2.7 Hz, 1 H, H-9a), 4.20–4.05 (m, 4 H, H-9b, H-6, H-5, CH2-O), 2.90-2.80 (m, 2 H, H-3eq, CH2), 2.74–2.64 (m, 1 H, CH2), 2.17, 2.12 (s, 2 × 3 H, 2OAc) 2.07 (m, 1 H, H-3ax), 2.05, 2.02 (s, 2 × 3 H, 2OAc), 2.01 (s, 3 H, Me), 1.98 (s, 3 H, NHAc). 13C NMR (CDCl3, 100 MHz): δ = 206.1 (ketone), 170.6, 170.2, 170.0, 167.3 (6C, 6CO), 153.1, 149.7, 137.2, 129.1, 122.8 (5C, 5C-Ar), 86.0 (C-2), 74.6 (C-6), 69.5 (C-4), 69.4 (C-8), 67.5 (C-7), 62.0 (C-9), 60.5 (CH2), 48.8 (C-5), 41.8 (CH2), 38.3 (C-3), 30.1 (Me), 23.2 (NHAc), 20.8–21.0 (4C, 4OAc). HRMS: m/z calcd for C28H36N2NaO13S: 663.1836; found: 663.1857. Lactones 21: First eluted isomer 21R: 1H NMR (CDCl3, 400 MHz): δ = 5.75 (d, J NH–H5 = 10.0 Hz, 1 H, NH), 5.62 (ddd, J H4–H3ax = 10.7 Hz, J H4–H5 = 10.0 Hz, J H4–H3eq = 5.7 Hz, 1 H, H-4), 5.32 (dd, J H7–H8 = 9.6 Hz, J H7–H6 = 2.4 Hz, 1 H, H-7), 5.23 (ddd, J H8–H7 = 9.6 Hz, J H8–H9b = 5.5 Hz, J H8–H9a = 2.7 Hz, 1 H, H-8), 4.48 (ddd, J = 11.2, 10.7, 4.7 Hz, 1 H, CH2-O), 4.26 (ddd, J = 11.2, 6.2, 2.7 Hz, 1 H, CH2-O), 4.26 (dd, J H9a–H9b = 12.8 Hz, J H9a–H8 = 2.7 Hz, 1 H, H-9a), 4.07 (q, J H5–H6 = J H5–H4 = J H5–NH = 10.0 Hz, 1 H, H-5), 3.97 (dd, J H9b–H9a = 12.8 Hz, J H9b–H8 = 5.5 Hz, 1 H, H-9b), 3.95 (dd, J H6–H5 = 10.0 Hz, J H6–H7 = 2.4 Hz, 1 H, H-6), 2.52 (s, 1 H, OH), 2.44 (ddd, J = 14.3, 10.7, 6.2 Hz, 1 H, CH2), 2.32 (dd, J H3eq–H3ax = 13.6 Hz, J H3eq–H4 = 5.7 Hz, 1 H, H-3eq), 2.11, 2.08, 2.03, 2.01 (s, 4 × 3 H, 4OAc), 1.95 (dd, J H3ax–H3eq = 13.6 Hz, J H3ax–H4 = 10.7 Hz, 1 H, H-3ax), 1.89 (s, 3 H, NHAc), 1.68 (ddd, J = 14.3, 4.7, 2.7 Hz, 1 H, CH2), 1.42 (s, 3 H, Me). 13C NMR (CDCl3, 100 MHz): δ = 171.0, 170.7, 170.6, 170.0, 169.8 (6C, 6CO), 79.7 (C-2), 73.2 (C-OH), 72.7 (C-6), 70.8 (C-4), 68.0 (C-8), 67.0 (C-7), 66.2 (CH2), 62.3 (C-9), 49.2 (C-5), 32.0 (CH2), 30.5 (C-3), 23.5 (CH3), 23.1 (NHAc), 20.7, 20.8, 21.0 (4C, 4OAc). HRMS: m/z calcd for C23H33NNaO13: 554.1850; found: 554.1831. Second eluted isomer 21S: 1H NMR (CDCl3, 400 MHz): δ = 5.87 (d, J NH–H5 = 10.8 Hz, 1 H, NH), 5.40 (ddd, J H8–H7 = 9.6 Hz, J H8–H9b = 5.6 Hz, J H8–H9a = 2.4 Hz, 1 H, H-8), 5.34 (dd, J H7–H8 = 9.6 Hz, J H7–H6 = 2.5 Hz, 1 H, H-7), 5.21 (ddd, J H4–H3ax = 11.6 Hz, J H4–H5 = 10.8 Hz, J H4–H3eq = 4.8 Hz, 1 H, H-4), 4.73 (dd, J H6–H5 = 10.8 Hz, J H6–H7 = 2.5 Hz, 1 H, H-6), 4.56 (ddd, J = 11.3, 8.7, 6.0 Hz, 1 H, CH2-O), 4.27 (ddd, J = 11.3, 6.6, 4.5 Hz, 1 H, CH2-O), 4.23 (dd, J H9a–H9b = 12.4 Hz, J H9a,H8 = 2.4 Hz, 1 H, H-9a), 4.12 (q, J H5–H4 = J H5,H6 = J H5,NHAc = 10.8 Hz, 1 H, H-5), 4.02 (dd, J H9b–H9a = 12.4 Hz, J H9b–H8 = 5.6 Hz, 1 H, H-9b), 3.39 (s, 1 H, OH), 2.29 (dd, J H3eq–H3ax = 13.2 Hz, J H3eq–H4 = 4.8 Hz, 1 H, H-3eq), 2.15, 2.14 (s, 2 × 3 H, 2OAc), 2.09 (m, 1 H, CH2), 2.06, 2.01 (s, 2 × 3 H, 2 × OAc), 1.97 (m, 1 H, CH2), 1.94 (dd, J H3ax–H3eq = 13.2 Hz, J H3ax–H4 = 11.6 Hz, 1 H, H-3ax), 1.90 (s, 3 H, NHAc), 1.36 (s, 3 H, Me). 13C NMR (CDCl3, 100 MHz): δ = 172.7, 170.8, 170.7, 170.5, 170.4, 170.0 (6C, 6CO), 80.7 (C-2), 73.6 (C-6 or C-OH), 73.4 (C-6 or C-OH), 69.6 (C-4), 67.7 (C-8), 67.2 (C-7), 66.6 (CH2), 62.8 (C-9), 49.1 (C-5), 32.9 (C-3), 32.7 (CH2), 23.1 (NHAc), 21.7 (CH3), 20.7, 20.8, 20.9, 21.0 (4C, 4OAc). HRMS: m/z calcd for C23H33NNaO13: 554.1850; found: 554.1831.
- 20 Kunz H, Waldmann H. J. Chem. Soc., Chem. Commun. 1985; 638
- 21 Shpirt AM, Kononov LO, Torgov VI, Shibaev VN. Russ. Chem. Bull. Int. Ed. 2004; 53: 717
- 22 Cao S, Meunier SJ, Andersson FO, Letellier M, Roy R. Tetrahedron: Asymmetry 1994; 5: 2303
- 23 Kunz H, Waldmann H, Klinkhammer U. Helv. Chim. Acta 1988; 71: 1868
- 24 Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
- 25 Shioiri T, Ninomiya K, Yamada S. J. Am. Chem. Soc. 1972; 94: 6203
- 26 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
- 27 Reductive Cyclization of 18; Typical Procedure: A freshly prepared solution of samarium diiodide (0.1m in THF, 4.7 mL, 3.0 equiv) was added to sialyl derivative 18 (100 mg, 0.16 mmol) previously dissolved in THF (0.5 mL) under an argon atmosphere. The solution was stirred at r.t. for 2 h. The initial blue color of the mixture then became yellow. The reaction was quenched by the addition of a few drops of a sat. aq NH4Cl. The aqueous layer was extracted four times with CH2Cl2 and the organics layers were combined and washed with sat. aq NaHCO3. The aqueous layers were extracted three times with CH2Cl2 and the organic layers were combined, dried under Na2SO4, filtered and concentrated under vacuum. The obtained residue was purified by silica gel chromatography (toluene–acetone, 3:1 to 2:1), furnishing the separated two stereoisomers of spirolactones 21 (75 mg total, 0.14 mmol, 90%). Spirolactone 21S was recrystallized in CH2Cl2/Et2O (mp 207 °C).
- 28 The X-ray diffraction data were collected with a Kappa X8 APPEX II Bruker diffractometer with graphite-monochromated MoKα radiation (λ = 0.71073 Å). CCDC 959507 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/Requestastructure.
- 29a Helm MD, Sucunza D, Da Silva M, Helliwell M, Procter DJ. Tetrahedron Lett. 2009; 50: 3224
- 29b Helm MD, Da Silva M, Sucunza D, Helliwell M, Procter DJ. Tetrahedron 2009; 65: 10816
Selected reviews on C-glycosides, see:
Reviews:
For reductive samariation on neutral hexoses, see:
For reviews, see:
For intramolecular versions, see:
For selected reviews, see:
For the formation of similar spirocyclic six-membered lactones by using a SmI2-mediated aldol reaction with aldehydes, see: