Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(07): 951-954
DOI: 10.1055/s-0033-1340182
DOI: 10.1055/s-0033-1340182
letter
Studies toward the Total Synthesis of Sorangicins: A Shortened Synthesis of the Dioxabicyclo[3.2.1]octane Core
Further Information
Publication History
Received: 10 January 2014
Accepted after revision: 13 February 2014
Publication Date:
14 March 2014 (online)
Abstract
An access to the dioxabicyclo[3.2.1]octane core of sorangicin A was developed, using a keto lactone formation, a Mukaiyama–Michael reaction and an epoxide opening as the key steps.
-
References and Notes
- 1a Irschik H, Jansen R, Gerth K, Höfle G, Reichenbach H. J. Antibiot. 1987; 40: 7
- 1b Jansen R, Wray V, Irschik H, Reichenbach H, Höfle G. Tetrahedron Lett. 1985; 26: 6031
- 1c Jansen R, Schummer D, Irschik H, Höfle G. Liebigs Ann. Chem. 1990; 975
- 1d Jansen R, Irschik H, Reichenbach H, Schomburg D, Wray V, Höfle G. Liebigs Ann. Chem. 1989; 111
- 2 Campbell EA, Pavlova O, Zenkin N, Leon F, Irschik H, Jansen R, Severinov K, Darst SA. EMBO J. 2005; 24: 674
- 3a Smith III AB, Dong S, Brenneman JB, Fox RJ. J. Am. Chem. Soc. 2009; 131: 12109
- 3b Smith III AB, Fox RJ. Org. Lett. 2004; 6: 1477
- 3c Smith III AB, Dong S. Org. Lett. 2009; 11: 1099
- 3d Smith III AB, Fox RJ, Vanecko JA. Org. Lett. 2005; 7: 3099
- 3e Smith III AB, Dong S, Fox RJ, Benneman JB, Vanecko JA, Maegawa T. Tetrahedron 2011; 67: 9809
- 4 Crimmins MT, Haley MW. Org. Lett. 2006; 8: 4223
- 5a Park HS, Lee HW. Bull. Korean Chem. Soc. 2008; 29: 1661
- 5b Lee K, Kim H, Hong J. Eur. J. Org. Chem. 2012; 1025
- 6a Mohapatra DK, Das PP, Pattanayak MR, Yadav JS. Chem. Eur. J. 2010; 16: 2072
- 6b Srihari P, Kumaraswamy B, Yadav JS. Tetrahedron 2009; 65: 6304
- 7 Sridhar Y, Srihari P. Org. Biomol. Chem. 2013; 11: 4640
- 8 Crimmins MT, Haley MW, O’Bryan EA. Org. Lett. 2011; 13: 4712
- 9 Schinzer D, Schulz C, Krug O. Synlett 2004; 2689
- 10 All new compounds gave correct analytical and spectroscopic data consistent with the assigned structures.
- 11a Jørgensen KA. Angew. Chem. 2000; 112: 3702
- 11b Gao Q, Maruyama T, Mouri M, Yamamoto H. J. Org. Chem. 1992; 57: 1951
- 11c Dossetter AG, Jamison TF, Jacobsen EN. Angew. Chem. 1999; 111: 2549
-
11d Schaus SE, Branalt J, Jacobsen EN. J. Org. Chem. 1998; 63: 403
-
11e Yamashita Y, Saito S, Ishitani H, Kobayashim S. J. Am. Chem. Soc. 2003; 125: 3793
- 11f Paterson I, Tudge M. Tetrahedron 2003; 59: 6833
- 12 Evans DA, Downey CW, Shaw JT, Tedrow JS. Org. Lett. 2002; 4: 1127
- 13a Vanderwal C, Vosburg DA, Weiler S, Sorensen E. Org. Lett. 1999; 1: 645
- 13b Hinterding K, Singhanat S, Oberer L. Tetrahedron Lett. 2001; 42: 8463
- 13c Brandlänge S, Leijonmarck H. Tetrahedron Lett. 1992; 33: 3025
- 14a Kocienski P, Narquizian R, Raubo P, Smith C, Farrugia LJ, Muir K, Boyle FT. J. Chem. Soc., Perkin Trans. 1 2000; 15: 2357
- 14b Willson T, Kocienski P, Jarowicki K, Isaac K, Hitchcock PM, Faller A, Campbell SF. Tetrahedron 1990; 46: 1767
- 15a Jewett JC, Rawal VH. Angew. Chem. Int. Ed. 2007; 46: 6502
- 15b Smith III AB, Razler TM, Ciavarri JP, Hirose T, Ishikawa T. Org. Lett. 2005; 7: 4399
-
15c Yamashita Y, Saito S, Ishitani H, Kobayashi S. J. Am. Chem. Soc. 2003; 125: 3793
- 16 General Procedure to Obtain 20: Compound 17 (3.291 g, 5.41 mmol) was dissolved in THF (40 mL) and a solution of TBAF in THF (6.5 mL, 1 M, 6.5 mmol). After 15 min stirring at r.t., MeOH (40 mL) and K2CO3 (7.5 g, 54.27 mmol) were added. After 48 h, H2O was added, phases were separated and the aqueous phase was extracted with EtOAc. The combined organic phases were dried over Na2SO4 and the residue, after evaporation of the solvent, was purified by flash chromatography (EtOAc–pentane, 1:1) to yield 20 (0.866 g, 3.33 mmol, 62%) as a colorless oil; [α]D 20 – 55° (c = 1,0 in CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 7.32–7.33 (m, 2 H), 7.29–7.33 (m, 2 H), 7.21–7.26 (m, 1 H), 6.56–6.60 (d, 3 J = 15.8 Hz, 1 H), 6.09–6.15 (dd, 3 J = 15.8, 7.5 Hz, 1 H), 4.44–4.46 (m, 1 H), 4.31–4.33 (d, 3 J = 6.6 Hz, 1 H), 4.04–4.10 (m, 3 H), 3.93–3.98 (m, 1 H), 2.05–2.10 (ddd, 2 J = 11.7 Hz, 3 J = 6.6, 2.7 Hz, 1 H), 1.93–1.96 (dd, 2 J = 11.7 Hz, 3 J = 1.5 Hz, 1 H), 1.50–1.57 (dq, 3 J = 9.1, 6.8 Hz, 1 H), 1.24–1.28 (t, 3 J = 7.16 Hz, <1 H), 0.94–0.95 (d, 3 J = 6.7 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 136.4, 132.1, 129.0, 128.5, 127.7, 126.5, 82.9, 79.8, 79.0, 74.4, 60.9, 41.6, 38.8, 15.2. IR (KBr): 3247 (m), 2976 (m), 2934 (m), 2888 (m), 1740 (w), 1496 (w), 1449 (m), 1371 (w), 1360 (w), 1239 (m), 1143 (s), 1078 (m), 1061 (s), 1037 (s), 962 (s), 929 (w), 746 (m), 693 (m), 544 (w) cm–1. MS (EI): m/z (%) = 260.1 (100) [M+], 245.1 (17), 211.1 (42), 160.1 (32), 131.1 (78), 115.1 (36), 104.1 (64), 91.1 (49), 69.1 (25), 55 (14). HRMS: m/z [M] calcd for C16H20O3: 260.1412; found: 260.1412. The NMR and mass spectroscopic data matched the values published by Crimmins (ref. 4) and Smith (ref. 3c).
- 17 Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 3769
- 18 Colvin EW, Hamill BJ. J. Chem. Soc., Chem. Commun. 1973; 151