Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(4): 569-573
DOI: 10.1055/s-0033-1340553
DOI: 10.1055/s-0033-1340553
letter
Synthesis of cis-5-Trifluoromethylproline from l-Glutamic Acid
Further Information
Publication History
Received: 03 November 2013
Accepted after revision: 09 December 2013
Publication Date:
14 January 2014 (online)
Abstract
The diastereoselective synthesis of cis-5-trifluoromethylproline (5-Tfm-Pro) from l-glutamic acid is described. 5-Tfm-Pro could be obtained through a seven-step linear sequence. Trifluoromethylation of the glutamic-derived ester or aldehyde and subsequent reduction of the cyclic imine are the key steps in the synthesis.
Key words
amino acids - cis-5-trifluoromethylproline - fluorine - diastereoselective synthesis - imine - reductionSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett. Included are detailed experimental procedures and 1H NMR, 13C NMR, 19F NMR and HRMS data.
- Supporting Information
-
References and Notes
- 1 Present address: Calyx Chemicals & Pharmaceuticals Ltd, A-37/38, MIDC, Dombivli East, Dist. Thane 421 203, Maharashtra, India.
- 2a Kowalczyk V, Prahl A, Derdowska I, Dawidowska O, Slaninovà J, Lammek B. J. Med. Chem. 2004; 47: 6020
- 2b Brackmann F, De Meijere A. Chem. Rev. 2007; 107: 4493
- 2c Fülöp F, Martinek TA, Toth GK. Chem. Soc. Rev. 2006; 35: 323
- 3a Yaron A, Naider F, Scharpe S. Crit. Rev. Biochem. Mol. Bio. 1993; 28: 31
- 3b Vanhoof G, Goossens F, De Meester I, Hendriks D, Scharpé S. FASEB J. 1995; 9: 736
- 3c Cai M, Cai C, Mayorov AV, Xiong C, Cabello CM, Soloshonok VA, Swift JR, Trivedi D, Hruby VJ. J. Peptide Res. 2004; 63: 116
- 4a Salwiczek M, Nyakatura EK, Gerling UI. M, Ye S, Koksch B. Chem. Soc. Rev. 2012; 41: 2135 ; and references therein
- 4b Qiu X.-L, Qing F.-L. Eur. J. Org. Chem. 2011; 3261 ; and references therein
- 4c Yoder NC, Kumar K. Chem. Soc. Rev. 2002; 31: 335
- 4d Aceña JL, Sorochinsky AE, Soloshonok VA. Synthesis 2012; 44: 1591
- 4e Aceña JL, Sorochinsky AE, Moriwaki H, Sato T, Soloshonok VA. J. Fluorine Chem. 2013; 155: 21
- 4f Sorochinsky AE, Soloshonok VA. J. Fluorine Chem. 2010; 131: 127
- 5a Soloshonok VA. Fluorine-Containing Synthons. Oxford University Press, 2005
- 5b Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology . Blackwell Publishing, Ltd; Chichester: 2009
- 5c Mikami K, Fustero S, Sanchez-Rosello M, Aceña JL, Soloshonok V, Sorochinsky A. Synthesis 2011; 3045
- 6 Chaume G, Van Severen M.-C, Marinkovic S, Brigaud T. Org. Lett. 2006; 8: 6123
- 7 Caupène C, Chaume G, Ricard L, Brigaud T. Org. Lett. 2009; 11: 209
- 8 Chaume G, Lensen N, Caupène C, Brigaud T. Eur. J. Org. Chem. 2009; 5717
- 9 Jlalia I, Lensen N, Chaume G, Dzhambazova E, Astasidi L, Hadjiolova R, Bocheva A, Brigaud T. Eur. J. Med. Chem. 2013; 62: 122
- 10 Gulevich AV, Shevchenko NE, Balenkova ES, Röschenthaler G.-V, Nenajdenko VG. Synlett 2009; 403
- 11 Li Q, Ding C.-H, Li X.-H, Weissensteiner W, Hou X.-L. Synthesis 2012; 44: 265
- 12 Li G.-H, Tong M.-C, Li J, Tao H.-Y, Wang C.-J. Chem. Commun. 2011; 47: 11110
- 13 Li Q.-H, Xue Z.-Y, Tao H.-Y, Wang C.-J. Tetrahedron Lett. 2012; 53: 3650
- 14 Qiu X.-L, Qing F.-L. J. Chem. Soc., Perkin Trans. 1 2002; 2052
- 15 Qiu X.-L, Qing F.-L. J. Org. Chem. 2002; 67: 7162
- 16 Del Valle JR, Goodman M. Angew. Chem. Int. Ed. 2002; 41: 1600
- 17 Chaume G, Barbeau O, Lesot P, Brigaud T. J. Org. Chem. 2010; 75: 4135
- 18a Chaume G, Feytens D, Chassaing G, Lavielle S, Brigaud T, Miclet E. New J. Chem. 2013; 37: 1336
- 18b Chaume G, Simon J, Caupène C, Lensen N, Miclet E, Brigaud T. J. Org. Chem. 2013; 78: 10144
- 19 Khangarot RK, Kaliappan KP. Eur. J. Org. Chem. 2013; 13: 2692
- 20 Kondratov IS, Dolovanyuk VG, Tolmachova NA, Gerus II, Bergander K, Fröhlich R, Haufe G. Org. Biomol. Chem. 2012; 10: 8778
- 21 Padrón JM, Kokotos G, Martín T, Markidis T, Gibbons WA, Martín VS. Tetrahedron: Asymmetry 1998; 9: 3381
- 22 Wiedemann J, Heiner T, Mloston G, Prakash GK. S, Olah GA. Angew. Chem. Int. Ed. 1998; 37: 820
- 23 The level of drying of all reagents and solvents required for this reaction might be the cause of the capricious nature of this transformation as discussed by the authors (Note: commercially available 1 M solution of TBAF in THF usually contains 5% of H2O).
- 24 Adamczyk M, Johnson DD, Reddy RE. Tetrahedron: Asymmetry 1999; 10: 775
- 25 Ilies M, Dowling DP, Lombardi PM, Christianson DW. Bioorg. Med. Chem. Lett. 2011; 21: 5854
- 26 Bodanszky M, Bodanszky A In The Practice of Peptide Synthesis . Springer Verlag; Berlin: 1984: 177
- 27 Experimental Procedure for 6: Using 4 M HCl–1 M NaOH: Compound 5 (1.2 mmol, 1 equiv) was dissolved in THF (10 mL) and a THF–12 M HCl mixture (11 mL/9 mL) was added dropwise and the solution was stirred at r.t. for 30 min. After concentration in vacuo, MeOH (2.4 mL) and 1 M NaOH (3.36 mL) were added to the crude product. The solution was stirred at r.t. for 2 h and concentrated in vacuo. Purification over Dowex 50WX8, eluting with H2O then 5% aq NH3 followed by purification over RP 18 silica gel, eluting with H2O afforded the imine 6 as an off-white solid after complete removal of the H2O (0.15 g, 0.83 mmol, 69%). Using 6 M HCl: Compound 5 (0.84 mmol, 1 equiv) was dissolved in 6 M HCl (3.5 mL). The solution was heated at 60 °C until reaction was complete (24 h) and the brown mixture then washed with Et2O (2 ×) and concentrated in vacuo. Purification following the procedure previously described afforded 6 in 59% yield (0.09 g, 0.50 mmol). 1H NMR (300 MHz, DMSO-d 6): δ = 4.62 (m, 1 H), 2.76 (m, 2 H), 2.13 (m, 2 H). 13C NMR (75.45 MHz, DMSO-d 6): δ = 173.3 (C), 164.3 (q, J CCF = 34.8 Hz, C), 120.5 (q, J CF = 273 Hz, C), 77.9 (CH), 33.5, 27.0 (CH2). 19F NMR (282.4 MHz, DMSO-d 6): δ = −68.8 (d, J HF = 2.8 Hz). [α]D 20 6.1 (c = 1.0, DMSO). HRMS (ESI−): m/z [M − H]− calcd for C6H5NO2F3: 180.0272; found: 180.0273.
- 28a Yasumoto M, Ueki H, Soloshonok VA. J. Fluorine Chem. 2007; 128: 736
- 28b Soloshonok VA, Yasumoto M. J. Fluorine Chem. 2006; 127: 889
- 28c Ono T, Kukhar VP, Soloshonok VA. J. Org. Chem. 1996; 61: 6563
- 29 Experimental Procedure for 7: The cyclic imine 6 (0.27 mmol, 1 equiv) was dissolved in anhyd DMF (2 mL) and Pd/C was (10−15 wt%) added. The solution was degassed at −78 °C for 5 min and the flask was filled with H2. After 16 h at r.t., the reaction was complete. The solution was filtered over a pad of Celite® and concentrated under high vacuum. Purification over RP 18 silica gel eluting with H2O containing a few drops of 12 M HCl afforded 5-Tfm-Pro as its hydrochloride salt (0.061 g, 0.27 mmol, 100%). 1H NMR (300 MHz, D2O): δ = 4.41 (m, 2 H), 2.05−2.42 (m, 4 H). 13C NMR (75.45 MHz, D2O): δ = 171.2 (C), 123.0 (q, J CF = 278 Hz, C), 61.5 (CH), 59.5 (q, J CCF = 33.7 Hz, C), 27.1, 23.7 (CH2). 19F NMR (282.4 MHz, D2O): δ = −72.3 (d, J HF = 7.06 Hz, cis isomer), −73.0 (d, J HF = 7.34 Hz, trans isomer). MS (ESI−): m/z = 181.94 ([M − H]−). HRMS (ESI−): m/z [M − H]− calcd for C6H7NO2F3: 182.0429; found: 182.0430.
- 30a Brun M.-P, Martin A.-S, Garbay C, Bischoff L. Tetrahedron Lett. 2003; 44: 7011
- 30b Mota AJ, Langlois N. Tetrahedron Lett. 2003; 44: 1141
- 30c Beausoleil E, L’Archevêque B, Bélec L, Atfani M, Lubell WD. J. Org. Chem. 1996; 61: 9447
- 31 Abdel-Magid AF, Carson KG, Harris BD, Maryanoff CA, Shah RD. J. Org. Chem. 1996; 61: 3849