Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(09): 1191-1196
DOI: 10.1055/s-0033-1340738
DOI: 10.1055/s-0033-1340738
synpacts
Organic Photoredox Catalysis as a General Strategy for Anti-Markovnikov Alkene Hydrofunctionalization
Further Information
Publication History
Received: 02 December 2013
Accepted after revision: 13 January 2014
Publication Date:
05 March 2014 (online)
Abstract
The development of a general catalyst system for the direct anti-Markovnikov hydrofunctionalization of alkenes is presented. A unique catalyst system comprised of an acridinium photooxidant and a hydrogen atom transfer reagent allows for a range of alkene anti-Markovnikov hydrofunctionalization reactions including hydroalkoxylation, hydroamination, and hydroacetoxylation.
-
References and Notes
- 1a Beller M, Seavad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
- 1b Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
- 1c Hintermann L. Top. Organomet. Chem. 2010; 31: 123
- 2 Wissermel K, Arpe H.-J. Industrial Organic Chemistry . 5th ed. Wiley-VCH; Weinheim: 2010
- 3a Trost BM. Science 1991; 254: 1471
- 3b Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
- 4a Utsunomiya M, Kuwano R, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 5608
- 4b Utsunomiya M, Kuwano R, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2004; 126: 2702
- 5 Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
- 6 Dong G, Teo P, Wickens ZK, Grubbs RH. Science 2011; 333: 1609
- 7 Catalytic, anti-Markovnikov addition reactions of nucleophiles to olefins has been described as a ‘top-10 challenge’ for catalysis, see: Haggin J. Chem. Eng. News 1993; 71: 23
- 8a Neunteufel RA, Arnold DR. J. Am. Chem. Soc. 1973; 95: 4080
- 8b Arnold DR, Chan MS. W, McManus KA. Can. J. Chem. 1995; 74: 2143
- 8c Mangion D, Arnold DR. Acc. Chem. Res. 2002; 35: 297
- 9a Gassman PG, Bottorff KJ. Tetrahedron Lett. 1987; 28: 5449
- 9b Gassman PG, Bottorff KJ. J. Am. Chem. Soc. 1987; 109: 7547
- 10a Inoue Y, Okano T, Yamasaki N, Tai A. J. Chem. Soc., Chem. Commun. 1993; 718
- 10b Asaoka S, Kitazawa T, Wada T, Inoue YJ. J. Am. Chem. Soc. 1999; 121: 8486
- 10c Takehara Y, Ohta N, Shiraishi S, Asaoka S, Wada T, Inoue Y. J. Photochem. Photobiol., A 2001; 145: 53
- 10d Asaoka S, Wada T, Inoue Y. J. Am. Chem. Soc. 2003; 125: 3008
- 11a Mizuno K, Nakanishi I, Ichinose N, Otsuji Y. Chem. Lett. 1989; 41: 1095
- 11b Mizuno K, Tamai T, Nishiyama T, Tani K, Sawasaki M, Otsuji Y. Angew. Chem. Int. Ed. Engl. 1994; 33: 2113
- 12 For a general review on the reactivity patterns of alkene cation-radicals, see: Schmittel M, Burghart A. Angew. Chem. Int. Ed. Engl. 1997; 36: 2550
- 13a Crich D, Ranganathan K, Neelamkavil S, Huang X. J. Am. Chem. Soc. 2005; 125: 7942
- 13b Crich D, Ranganathan K. J. Am. Chem. Soc. 2005; 127: 9924
- 13c Crich D, Shirai M, Brebion F, Rumthao S. Tetrahedron 2006; 62: 6501
- 13d Crich D, Brebion F, Suk D.-H. Radicals in Synthesis I, In Top. Curr. Chem. 2006; 263: 1
- 14a Sutterer A, Moeller KD. J. Am. Chem. Soc. 2000; 122: 5636
- 14b Moeller KD. Synlett 2009; 1208
- 14c Campbell JM, Xu H, Moeller KD. J. Am. Chem. Soc. 2012; 134: 18338
- 14d Perkins RJ, Xu H, Campbell JM, Moeller KD. Beilstein J. Org. Chem. 2013; 9: 1630
- 14e Smith JA, Moeller KD. Org. Lett. 2013; 15: 5818
- 15 For a comprehensive accounting of reduction potentials of single-electron oxidants, see: Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
- 16a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 16b Yoon TP, Ischay MA, Du J. Nat. Chem. 2012; 2: 527
- 16c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 17a Ohkubo K, Suga K, Morikawa K, Fukuzumi S. J. Am. Chem. Soc. 2003; 125: 12850
- 17b Chang YC, Chang PW, Wang CM. J. Phys. Chem. B 2003; 107: 1628
- 18 For initial disclosure, see: Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
- 19a Benniston AC, Harriman A, Li P, Rostron JP, van Ramesdonk HJ, Groeneveld MM, Zhang H, Verhoeven JW. J. Am. Chem. Soc. 2005; 127: 16054
- 19b Ohkubo K, Kotani H, Fukuzumi S. Chem. Commun. 2005; 4520
- 19c Verhoeven JW, van Ramesdonk HJ, Zhang H, Groeneveld MM, Benniston AC, Harriman A. Int. J. Photoenergy 2005; 7: 103
- 19d Benniston AC, Harriman A, Li P, Rostron JP, Verhoeven JW. Chem. Commun. 2005; 2701
- 19e Benniston AC, Harriman A, Verhoeven JW. Phys. Chem. Chem. Phys. 2008; 10: 5156
- 19f Fukuzumi S, Kotani H, Ohkubo K. Phys. Chem. Chem. Phys. 2008; 10: 5159
- 19g Benniston AC, Elliott KJ, Harrington RW, Clegg W. Eur. J. Org. Chem. 2009; 253
- 19h Hoshino M, Uekusa H, Tomita A, Koshihara S, Sato T, Nozawa S, Adachi S, Ohkubo K, Kotani H, Fukuzumi S. J. Am. Chem. Soc. 2012; 134: 4569
- 20a Kotani H, Ohkubo K, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 15999
- 20b Ohkubo K, Nanjo T, Fukuzumi S. Bull. Chem. Soc. Jpn. 2006; 79: 1489
- 20c Ohkubo K, Mizushima K, Iwata R, Souma K, Suzuki N, Fukuzumi S. Chem. Commun. 2009; 46: 601
- 20d Ohkubo K, Fujimoto A, Fukuzumi S. Chem. Commun. 2011; 47: 8515
- 20e Ohkubo K, Mizushima K, Iwata R, Fukuzumi S. Chem. Sci. 2011; 2: 715
- 20f Fukuzumi S, Ohkubo K. Chem. Sci. 2013; 4: 561
- 21 Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
- 22 Bordwell FG, Cheng JP, Ji GZ, Satish AV, Zhang X. J. Am. Chem. Soc. 1991; 113: 9790
- 23 Estimated from the oxidation potential of 17, see: Ohkita M, Suzuki T, Tsuji T, Yamada M. Heterocycles 2001; 54: 387
- 24 Nguyen TM, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588
- 25 Perkowski AJ, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 10334
For hydrofunctionalizations using alkene cation-radical surrogates, see:
Several reviews have been written on transition-metal photoredox catalysis, see:
Such lifetimes tend to be on the order of nanoseconds; specific values can be found in the following references:
The existence of an exceedingly long-lived charge transfer state for 8 has been a matter of some contention. For a full perspective of this debate, see:
Regardless of their photophysical properties, acridinium-derived photocatalysts have proven useful as photooxidants capable of the catalysis of a multitude of organic transfor-mations. For examples, see: