Subscribe to RSS
DOI: 10.1055/s-0033-1341062
Regioselectivity of Intramolecular Rhodium-Catalyzed C–H Insertion Reactions of α-Aryl-α-diazocarboxylates: Influence of the Aryl Substituent
Publication History
Received: 09 January 2014
Accepted after revision: 04 March 2014
Publication Date:
03 April 2014 (online)
Abstract
It was found that α-aryl-α-diazocarboxylates react with variable regioselectivity in intramolecular rhodium-catalyzed C–H insertion reactions. 3-(Trialkoxysilyl)propyl esters underwent a clean cis-γ-lactone formation (62–69%) if the aryl rest was a phenyl group while the analogous α-(2-bromophenyl)-α-diazocarboxylates produced the respective β-lactones. In general β-lactone formation was shown to be the only detectable C–H insertion pathway for the latter substrate class irrespective of the ester substituent. The β-lactone products (eight examples) were obtained in yields of 41–68% with a diastereomeric ratio (dr) of 75:25 to 96:4 in favor of the trans diastereoisomer. The 2-bromo substituent could be displaced by an aryl group in a subsequent Suzuki cross-coupling reaction.
Key words
carbene complexes - diastereoselectivity - insertion - lactones - regioselectivity - rhodium - ring closureSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett. Included are procedures and analytical data for all new compounds.
- Supporting Information
Primary Data
- for this article are available online at http://www.thieme-connect.com/ejournals/toc/synthesis and can be cited using the following DOI: 10.4125/pd0057th. FIDs and associated files for the 1H and 13C NMR spectra for compounds 5, 6, 7, 8, 11, and 15 are provided.
- Primary Data
-
References and Notes
- 1a Doyle MP, Liu Y, Ratnikov M. Org. React. (N. Y.) 2013; 80: 1
- 1b Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
- 1c Slattery CN, Ford A, Maguire AR. Tetrahedron 2010; 66: 6681
- 1d Davies HM. L, Beckwith RJ. Chem. Rev. 2003; 103: 2861
- 2a Taber DF, Paquette CM, Gu P, Tian W. J. Org. Chem. 2013; 78: 9772
- 2b Gauthier D, Dodd RH, Dauban P. Tetrahedron 2009; 65: 8542
- 2c Candeias NR, Gois PM. P, Afonso CA. M. J. Org. Chem. 2006; 71: 5489
- 2d Grohmann M, Buck S, Schaeffler L, Maas G. Adv. Synth. Catal. 2006; 348: 2203
- 2e Choi MK.-W, Yu W.-Y, Che C.-M. Org. Lett. 2005; 7: 1081
- 2f Taber DF, Joshi PV. J. Org. Chem. 2004; 69: 4276
- 2g Wee AG. H. J. Org. Chem. 2001; 66: 8513
- 2h Doyle MP, Davies SB, May EJ. J. Org. Chem. 2001; 66: 8112
- 3 For a review, see: Herrmann P, Bach T. Chem. Soc. Rev. 2011; 40: 2022
- 4a Archambeau A, Miege F, Meyer C, Cossy J. Angew. Chem. Int. Ed. 2012; 51: 11540
- 4b Taber DF, Tian W. J. Org. Chem. 2007; 72: 3207
- 4c Jung YC, Yoon CH, Turos E, Yoo KS, Jung KW. J. Org. Chem. 2007; 72: 10114
- 4d Shi W, Zhang B, Zhang J, Liu B, Zhang S, Wang J. Org. Lett. 2005; 7: 3103
- 4e Taber DF, Tian W. J. Org. Chem. 2007; 72: 3207
- 5a Doyle MP, Ratnikov M, Liu Y. Org. Biomol. Chem. 2011; 9: 4007
- 5b Hansen J, Davies HM. L. Coord. Chem. Rev. 2008; 252: 545
- 5c Reddy RP, Lee GH, Davies HM. L. Org. Lett. 2006; 8: 3437
- 5d Saito H, Oishi H, Kitagaki S, Nakamura S, Ananda M, Hashimoto S. Org. Lett. 2002; 4: 3887
- 5e Doyle MP, Hu W, Valenzuela MV. J. Org. Chem. 2002; 67: 2954
- 5f Davies HM. L, Grazini MV. A, Aouad E. Org. Lett. 2001; 3: 1475
- 5g Doyle MP, May EJ. Synlett 2001; 967
- 6a Balaji BS, Chanda BM. Tetrahedron Lett. 1998; 39: 6381
- 6b Lall SM, Ramtohul YK, James MN. G, Vederas JC. J. Org. Chem. 2002; 67: 1536
- 6c Villalobos MN, Wood JL. Tetrahedron Lett. 2009; 50: 6450
- 7a Osteraas AJ, Olsen DA. Nature (London) 1969; 221: 1140
- 7b Osteraas AJ, Olsen DA. J. Appl. Polym. Sci. 1969; 13: 1523
- 7c Demonceau A, Noels AF, Hubert A, Theyssie PJ. J. Chem. Soc., Chem. Commun. 1981; 688
- 7d Aglietto M, Alterio R, Bertrani R, Galleschi F, Ruggeri G. Polymer 1989; 30: 1133
- 8a Ueno Y, Moriya O, Chino K, Watanabe M, Okawara M. J. Chem. Soc., Perkin Trans. 1 1986; 1351
- 8b Brunner M, Alper H. J. Org. Chem. 1997; 62: 7565
- 8c Donate PM, Frederico D, da Silva R, Gomes Constantino M, Del Ponte G, Bonatto PS. Tetrahedron: Asymmetry 2003; 14: 3253
- 8d Palomo C, Vera S, Mielgo A, Gomez-Bengoa E. Angew. Chem. Int. Ed. 2006; 45: 5984
- 9a Brook MA. Silicon in Organic, Organometallic, and Polymer Chemistry. John Wiley & Sons; New York: 2000: 485
- 9b Bassindale AR, Glynn SJ, Taylor PG. Activating and Directive Effects of Silicon. In The Chemistry of Organic Silicon Compounds. Vol. 2. Rappoport Z, Apeloig Y. Wiley; Chichester: 1998: 355
- 10 Sakurai H, Onozawa Y, Tanaka M. J. Org. Chem. 1998; 63: 422
- 11a Mulzer J, Zippel M, Brüntrup G. Angew. Chem. 1980; 92: 469
- 11b Mulzer J, Zippel M, Brüntrup G, Segner J, Finke J. Liebigs Ann. Chem. 1980; 1108
- 11c Mulzer J, Zippel M. Angew. Chem. 1981; 93: 405
- 11d Black TH, DuBay WJ. III, Tully PS. J. Org. Chem. 1988; 53: 5922
- 11e Mead KT, Yang H.-L. J. Org. Chem. 1990; 55: 2991
- 12 Erhardt SA, Hoffmann F, Daiß JO, Stohrer J, Herdtweck E, Rieger B. Chem. Eur. J. 2013; 19: 4818
- 13a Regitz M. Chem. Ber. 1964; 98: 1210
- 13b Regitz M. Angew. Chem. Int. Ed. 1967; 6: 733
- 13c Curphey TJ. Org. Prep. Proced. Intl. 1981; 13: 112
- 14 Representative Procedure for 8c: A 50-mL Schlenk flask was charged with benzene (12 mL) and Rh2(OAc)4 (0.5 mol%) and the solution was heated to 80 °C. Diazo compound 7c (567 mg, 1.91 mmol), dissolved in benzene (4.0 mL), was added to the catalyst solution at 80 °C over 3 h employing a syringe pump. After complete addition the reaction mixture was stirred at 80 °C for additional 30 min. After removing the solvent under reduced pressure the crude reaction mixture was purified directly by flash column chromatography (silica gel, pentane–EtOAc 98:2 → 90:10) yielding compound 8c (340 mg, 1.26 mmol, 66%) as an inseparable mixture of diastereoisomers in a ratio of 88:12 (trans/cis). 1H NMR: (360 MHz, CDCl3): δ = 0.91 [t, 3 J = 7.4 Hz, 0.36 H, Me (cis)], 1.00 [t, 3 J = 7.4 Hz, 2.64 H, Me (trans)], 1.32–1.40 [m, 0.24 H, CH 2CH3 (cis)], 1.49–1.65 [m, 1.76 H, CH 2CH3 (trans)], 1.93–2.01 (m, 1 H, CHCH2CHH), 2.12–2.21 (m, 1 H, CHCH2CHH), 4.43–4.47 [m, 0.88 H, CHCH2 (trans)], 4.80 [d, 3 J = 4.3 Hz, 0.88 H, CHAr (trans)], 4.89–4.93 [m, 0.12 H, CHCH2 (cis)], 5.26 [d, 3 J = 6.6 Hz, 0.12 H, CHAr (cis)], 7.14 [virt. t, 3 J ≅ 7.4 Hz, 0.12 H, CCHarCH ar (cis)], 7.21 [virt. t, 3 J ≅ 7.4 Hz, 0.88 H, CCHarCH ar (trans)], 7.28 [virt. t, 3 J ≅ 7.4 Hz, 0.12 H, CCHarCHarCH ar (cis)], 7.36 [virt. t, 3 J ≅ 7.4 Hz, 0.88 H, CCHarCHarCH ar (trans)], 7.44 [d, 3 J = 7.8 Hz, 0.88 H, CCH ar (trans)], 7.48 [d, 3 J = 7.8 Hz, 0.12 H, CCH ar (cis)], 7.57 [d, 3 J = 7.8 Hz, 0.12 H, CH arCBr (cis)], 7.60 [d, 3 J = 7.8 Hz, 0.88 H, CH arCBr (trans)]. 13C NMR (90.6 MHz, CDCl3): δ (major diastereoisomer) = 13.7, 18.4, 30.6, 60.8, 80.1, 123.8, 128.3, 128.7, 129.9, 133.0, 133.2, 168.8. HRMS: m/z calcd for C9H6 79BrO2: 224.0195; found: 224.0191. HRMS: m/z calcd for C9H6 81BrO2: 226.0175; found: 226.0177.
- 15 Wolfe JP, Singer RA, Yang BH, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 9550
For comprehensive reviews, see:
For selected recent papers, see:
For selected recent papers, see:
For selected recent papers, see: