Semin Plast Surg 2014; 28(01): 011-019
DOI: 10.1055/s-0034-1368162
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Robotic-Assisted Microsurgery for an Elective Microsurgical Practice

Ahmet Gudeloglu
1   The PUR Clinic (Personalized Urology & Robotics) & South Lake Hospital, Clermont, Florida
2   The PUR Clinic (Personalized Urology & Robotics), Ankara, Turkey
,
Jamin V. Brahmbhatt
1   The PUR Clinic (Personalized Urology & Robotics) & South Lake Hospital, Clermont, Florida
,
Sijo J. Parekattil
1   The PUR Clinic (Personalized Urology & Robotics) & South Lake Hospital, Clermont, Florida
› Author Affiliations
Further Information

Publication History

Publication Date:
07 March 2014 (online)

Abstract

Robotic-assisted microsurgery can be utilized for either intracorporal or extracorporeal surgical procedures. Three-dimensional high-definition magnification, a stable ergonomic platform, elimination of physiologic tremor, and motion scaling make the robotic platform attractive for microsurgeons for complex procedures. Additionally, robotic assistance enables the microsurgeon to take microsurgery to challenging intracorporeal locations in a minimally invasive manner. Recent adjunctive technological developments offer the robotic platform enhanced optical magnification, improved intraoperative imaging, and more precise ablation techniques for microsurgical procedures. The authors present the current state-of-the art tools available in the robotic-assisted microsurgical platform.

 
  • References

  • 1 Degueldre M, Vandromme J, Huong PT, Cadière GB. Robotically assisted laparoscopic microsurgical tubal reanastomosis: a feasibility study. Fertil Steril 2000; 74 (5) 1020-1023
  • 2 Trost L, Parekattil S, Wang J, Hellstrom WJ. Intracorporeal robotic-assisted microsurgical vasovasostomy for the treatment of bilateral vasal obstruction occurring following bilateral inguinal hernia repairs with mesh placement. J Urol 2013; Dec 11. [Epub ahead of print]
  • 3 Maire N, Naito K, Lequint T, Facca S, Berner S, Liverneaux P. Robot-assisted free toe pulp transfer: feasibility study. J Reconstr Microsurg 2012; 28 (7) 481-484
  • 4 Lee JY, Mattar T, Parisi TJ, Carlsen BT, Bishop AT, Shin AY. Learning curve of robotic-assisted microvascular anastomosis in the rat. J Reconstr Microsurg 2012; 28 (7) 451-456
  • 5 de Almeida JR, Park RC, Genden EM. Reconstruction of transoral robotic surgery defects: principles and techniques. J Reconstr Microsurg 2012; 28 (7) 465-472
  • 6 Garcia Jr JC, Lebailly F, Mantovani G, Mendonca LA, Garcia J, Liverneaux P. Telerobotic manipulation of the brachial plexus. J Reconstr Microsurg 2012; 28 (7) 491-494
  • 7 Patel NV, Pedersen JC. Robotic harvest of the rectus abdominis muscle: a preclinical investigation and case report. J Reconstr Microsurg 2012; 28 (7) 477-480
  • 8 Parekattil SJ, Gudeloglu A. Robotic assisted andrological surgery. Asian J Androl 2013; 15 (1) 67-74
  • 9 Shirzadi A, Mukherjee D, Drazin DG , et al. Use of the video telescope operating monitor (VITOM) as an alternative to the operating microscope in spine surgery. Spine (Phila Pa 1976) 2012; 37 (24) E1517-E1523
  • 10 Mamelak AN, Drazin D, Shirzadi A, Black KL, Berci G. Infratentorial supracerebellar resection of a pineal tumor using a high definition video exoscope (VITOM®). J Clin Neurosci 2012; 19 (2) 306-309
  • 11 Frykman PK, Duel BP, Gangi A, Williams JA, Berci G, Freedman AL. Evaluation of a video telescopic operating microscope (VITOM) for pediatric surgery and urology: a preliminary report. J Laparoendosc Adv Surg Tech A 2013; 23 (7) 639-643
  • 12 De Wilde RL, Herrmann A. Robotic surgery - advance or gimmick?. Best Pract Res Clin Obstet Gynaecol 2013; 27 (3) 457-469
  • 13 Tobis S, Knopf J, Silvers C , et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol 2011; 186 (1) 47-52
  • 14 Krane LS, Manny TB, Hemal AK. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients. Urology 2012; 80 (1) 110-116
  • 15 Wagner OJ, Louie BE, Vallières E, Aye RW, Farivar AS. Near-infrared fluorescence imaging can help identify the contralateral phrenic nerve during robotic thymectomy. Ann Thorac Surg 2012; 94 (2) 622-625
  • 16 Marano A, Priora F, Lenti LM, Ravazzoni F, Quarati R, Spinoglio G. Application of fluorescence in robotic general surgery: review of the literature and state of the art. World J Surg 2013; 37 (12) 2800-2811
  • 17 Holloway RW, Bravo RA, Rakowski JA , et al. Detection of sentinel lymph nodes in patients with endometrial cancer undergoing robotic-assisted staging: a comparison of colorimetric and fluorescence imaging. Gynecol Oncol 2012; 126 (1) 25-29
  • 18 Mues AC, Okhunov Z, Badani K, Gupta M, Landman J. Intraoperative evaluation of renal blood flow during laparoscopic partial nephrectomy with a novel Doppler system. J Endourol 2010; 24 (12) 1953-1956
  • 19 Hess HA. A biomedical device to improve pediatric vascular access success. Pediatr Nurs 2010; 36 (5) 259-263
  • 20 Phipps K, Modic A, O'Riordan MA, Walsh M. A randomized trial of the Vein Viewer versus standard technique for placement of peripherally inserted central catheters (PICCs) in neonates. J Perinatol 2012; 32 (7) 498-501
  • 21 Karaaltin MV. Utilizing the vein viewer technology to map out a venous flap preoperatively. J Reconstr Microsurg 2013; 29 (6) 423-424
  • 22 Ryan RW, Spetzler RF, Preul MC. Aura of technology and the cutting edge: a history of lasers in neurosurgery. Neurosurg Focus 2009; 27 (3) E6
  • 23 Tulikangas PK, Smith T, Falcone T, Boparai N, Walters MD. Gross and histologic characteristics of laparoscopic injuries with four different energy sources. Fertil Steril 2001; 75 (4) 806-810
  • 24 Gudeloglu A, Brahmbhatt J, Parekattil S. Prospective comparison of flexible fiberoptic CO2 laser and standard monopolar cautery for robotic microsurgical denervation of the spermatic cord procedure. Fertil Steril 2013; 100 (3 Suppl): S123-S124
  • 25 Toth S, Vajda J, Pasztor E, Toth Z. Separation of the tumor and brain surface by “water jet” in cases of meningiomas. J Neurooncol 1987; 5 (2) 117-124
  • 26 Guru KA, Perlmutter AE, Butt ZM, Peabody JO. Hydrodissection for preservation of neurovascular bundle during robot-assisted radical prostatectomy. Can J Urol 2008; 15 (2) 4000-4003
  • 27 Gudeloglu A, Iqbal Z, Parekattil SJ , et al. Hydrodissection for improved microsurgical denervation of the spermatic cord: prospective blinded randomized control trial in a rat model. Fertil Steril 2011; 96 (3 Suppl): S87-S88
  • 28 De Palma GD, Rispo A. Confocal laser endomicroscopy in inflammatory bowel diseases: dream or reality?. World J Gastroenterol 2013; 19 (34) 5593-5597
  • 29 Yserbyt J, Dooms C, Decramer M, Verleden GM. Probe-based confocal laser endomicroscopy of the respiratory tract: a data consistency analysis. Respir Med 2013; 107 (8) 1234-1240
  • 30 Ustione A, Piston DW. A simple introduction to multiphoton microscopy. J Microsc 2011; 243 (3) 221-226
  • 31 Benninger RK, Hao M, Piston DW. Multi-photon excitation imaging of dynamic processes in living cells and tissues. Rev Physiol Biochem Pharmacol 2008; 160: 71-92
  • 32 Ramasamy R, Sterling J, Li PS , et al. Multiphoton imaging and laser ablation of rodent spermatic cord nerves: potential treatment for patients with chronic orchialgia. J Urol 2012; 187 (2) 733-738
  • 33 Laudano MA, Osterberg EC, Sheth S , et al. Microsurgical Denervation of Rat Spermatic Cord: Safety and Efficacy Data. BJU Int 2013; ••• : 10.1111/bju.12421
  • 34 Titan Medical Inc. Canada Titan Medical Inc. produces video illustrating the dexterity of its SPORT™ single port orifice robotic technology. Available at: http://www.titanmedicalinc.com/titan-medical-inc-produces-video-illustrating-the-dexterity-of-its-sport-single-port-orifice-robotic-technology/ . Accessed January 19, 2014
  • 35 Lendvay TS, Hannaford B, Satava RM. Future of robotic surgery. Cancer J 2013; 19 (2) 109-119