RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2014; 25(14): 2005-2008
DOI: 10.1055/s-0034-1378394
DOI: 10.1055/s-0034-1378394
letter
Cobalt Porphyrin Catalyzed [3+2] Cycloaddition of Cyclopropanes and Carbonyl Compounds
Weitere Informationen
Publikationsverlauf
Received: 19. Mai 2014
Accepted after revision: 09. Juni 2014
Publikationsdatum:
04. August 2014 (online)

Abstract
A cobalt porphyrin efficiently catalyzed the formal [3+2] cycloaddition of alkyl-/aryl-substituted cyclopropanes and carbonyl compounds such as aldehydes and ketones to afford the corresponding substituted tetrahydrofurans. The use of the cobalt porphyrin complex as a Lewis acid to catalyze the reaction via the electrophilic activation of cyclopropanes was demonstrated. The high functional-group tolerance and robustness of the catalyst were also demonstrated. Further, the potential utility of the catalyst was demonstrated by performing the cycloaddition of cyclic ketones and cyclopropanes to afford spiro tetrahydrofurans.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Harmange J.-C, Figadére B. Tetrahedron: Asymmetry 1993; 4: 1711
- 1b Bellur E, Feist H, Langer P. Tetrahedron 2007; 63: 10865
- 1c Wolfe JP, Hay MB. Tetrahedron 2007; 63: 261
- 2a Fual MM, Huff BE. Chem. Rev. 2000; 100: 2407
- 2b Kang EJ, Lee E. Chem. Rev. 2005; 105: 4348
- 2c Li N, Shi Z, Tang Y, Chen J, Li X. Beilstein J. Org. Chem. 2008; 4: 1
- 2d Lorente A, Lamariano-Merketegi J, Albericio F, Álvarez M. Chem. Rev. 2013; 113: 4567
- 3a Fries P, Halter D, Kleinschek A, Hartung J. J. Am. Chem. Soc. 2011; 133: 3906
- 3b Vasconcelos RS, Silva LF. Jr, Giannis A. J. Org. Chem. 2011; 76: 1499
- 3c Arthuis M, Beaud R, Gandon V, Roulland E. Angew. Chem. Int. Ed. 2012; 51: 10510
- 3d Miller Y, Miao L, Hosseini AS, Chemler SR. J. Am. Chem. Soc. 2012; 134: 12149
- 3e Hashimoto Y, Itoh K, Kakehi A, Shiro M, Suga H. J. Org. Chem. 2013; 78: 6182
- 3f Touchet S, Macé A, Roisenel T, Carreeaux F, Bouillon A, Carboni B. Org. Lett. 2013; 15: 2712
- 3g Grandjean J.-MM, Nicewicz DA. Angew. Chem. Int. Ed. 2013; 52: 3967
- 3h Minuti L, Bonaccorosi AP. M, Di Gioia ML, Leggio A, Siciliano C, Temperini A. Org. Lett. 2013; 15: 3906
- 3i Trost BM, Bringley DA. Angew. Chem. Int. Ed. 2013; 52: 4466
- 4a Reissig H.-U. Top. Curr. Chem. 1988; 144: 73
- 4b Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
- 4c Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 4d Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
- 4e Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 2
- 4f Davies HM. L, Denton JR. Chem. Soc. Rev. 2009; 38: 3061
- 4g Cavitt MA, Phunt LH, France S. Chem. Soc. Rev. 2014; 43: 804
- 4h De Simone F, Waser J. Synthesis 2009; 3353
- 4i Tang P, Qin Y. Synthesis 2012; 2969
- 5a Han Z, Uehira S, Tsuritani T, Shinokubo H, Oshima K. Tetrahedron 2001; 57: 987
- 5b Christie SD. R, Cummins J, Elsegood MR, Dawson G. Synlett 2009; 257 ; see also ref. 7a,b
- 6a Pohlhaus PD, Johnson JS. J. Org. Chem. 2005; 70: 1057
- 6b Sanders SD, Ruiz-Olalla A, Johnson JS. Chem. Commun. 2009; 5135
- 6c Campbell MJ, Johnson JS. J. Am. Chem. Soc. 2009; 131: 10370
- 6d Campbell MJ, Johnson JS, Parsons AT, Polhous PD, Sanders SD. J. Org. Chem. 2010; 75: 6317
- 6e Smith AG, Slade MC, Johnson JS. Org. Lett. 2011; 13: 1996
- 6f Yang G, Shen Y, Li K, Sun Y, Hua Y. J. Org. Chem. 2011; 76: 229
- 6g Yang G, Sun Y, Shen Y, Chai Z, Zhou S, Chu J, Chai J. J. Org. Chem. 2013; 78: 5393
- 6h Christie SD. R, Davoile RJ, Elsegood MR, Fryatt R, Jone RC. F, Pritchard GJ. Chem. Commun. 2004; 2474 ; see also ref. 7c–e
- 7a Sugita Y, Kawai K, Yokoe I. Heterocycles 2000; 53: 657
- 7b Sugita Y, Kawai K, Yokoe I. Heterocycles 2001; 55: 135
- 7c Gupta A, Yadav VK. Tetrahedron Lett. 2006; 47: 8043
- 7d Pohlhaus PD, Sanders SD, Parsons AT, Li W, Johnson JS. J. Am. Chem. Soc. 2008; 130: 8642
- 7e Xing S, Pan W, Liu C, Ren J, Wang Z. Angew. Chem. Int. Ed. 2010; 49: 3215
- 7f Mei L.-Y, Wei Y, Xu Q, Shi M. Organometallics 2013; 32: 3544
- 7g Benfatti F, de Nateuil F, Waser J. Chem. Eur. J. 2012; 18: 4844
- 7h Hu B, Xing S, Ren J, Wang Z. Tetrahedron 2010; 60: 5671
- 8a Pohlhaus PD, Johnson JS. J. Am. Chem. Soc. 2005; 127: 16014
- 8b Pohlhaus PD, Johnson JS. J. Am. Chem. Soc. 2009; 131: 3122
- 9a Suda K, Baba K, Nakajima S.-I, Takanami T. Chem. Commun. 2002; 2570
- 9b Suda K, Kikkawa T, Nakajima S.-I, Takanami T. J. Am. Chem. Soc. 2004; 126: 9554
- 9c Suda K, Baba K, Nakajima S.-i, Takanami T. Tetrahedron Lett. 1999; 40: 7243
- 9d Chen J, Che C.-M. Angew. Chem. Int. Ed. 2004; 43: 4950
- 9e Li Y, Chan PW. H, Zhu N.-Y, Che C.-M, Kwong H.-L. Organometallics 2004; 23: 54
- 9f Schmidt JA. R, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2005; 127: 11426
- 9g Zhou C.-H, Chan PW. H, Che C.-M. Org. Lett. 2006; 8: 325
- 10a Fujiwara K, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2012; 134: 5512
- 10b Wakabayashi R, Kurahashi T, Matsubara S. Org. Lett. 2012; 14: 4794
- 10c Ozawa T, Kurahashi T, Matsubara S. Org. Lett. 2012; 14: 3008
- 11a Satoh M, Ohba Y, Yamauchi S, Iwaizumi M. Inorg. Chem. 1992; 31: 298
- 11b Sakurai T, Yamamoto K, Naito H, Nakamoto N. Bull. Chem. Soc. Jpn. 1976; 49: 3042
- 11c Fukuzumi S, Okamoto K, Tokuda Y, Gros CP, Guilard R. J. Am. Chem. Soc. 2004; 126: 17059
- 12 The [3+2] cycloaddition afforded tetrahydrofuran 3da (Table 2, entry 4) and 3ac (Table 3, entry 3) with low diasteroselectivity. These reactions proceed in high diasteroselectivity at initial stage, however, epimerization occurs upon completion of the reaction probably because electron-donating methoxy group facilitate the ring opening by stabilizing benzylic cation intermediate. For epimerization of the tetrahydrofurans with Lewis acid, see ref. 6e.
- 13 For the computational studies on the [3+2] cycloaddition of the malonate-derivered cyclopropanes with aldehydes, see: Zhang J, Shen W, Li M. Eur. J. Org. Chem. 2007; 4855
- 14 General Procedure for the [3+2] Cycloaddition The reaction was performed in a 15 mL sealed tube equipped with a Teflon-coated magnetic stirrer bar. An aldehyde 2 (0.15 mmol) was added to a solution of cyclopropane 1 (0.1 mmol) and [Co(TPP)]TFPB (3.1 mg, 4 μmol) in DCE (1 mL) in a dry box. The sealed tube was taken outside the dry box and heated at 55 °C for the indicated time under argon atmosphere. The resulting reaction mixture was cooled to ambient temperature and filtered through a silica gel pad, concentrated in vacuo. The residue was purified by flash silica gel column chromatography (20 g, 2 × 15 cm; hexane–EtOAc, 5:1) to give the products 3.
For reviews on the synthesis of tetrahydrofurans, see:
For selected reviews on the synthesis of natural products with tetrahydrofuran skeletons, see:
For selected recent examples of tetrahydrofuran synthesis, see:
For reviews on malonate-derived donor–acceptor (D–A) cyclopropanes and their synthetic applications, see:
For metal-mediated cycloaddition of cyclopropanes with aldehydes, see:
For Lewis acid catalyzed cycloaddition of cyclopropanes with aldehydes, see:
For cycloaddition of cyclopropanes with ketones, see:
For Lewis acid catalyzed asymmetric cycloaddition of cyclopropanes with aldehydes, see:
For examples of the use of metalloporphyrins in nonoxidative bond formation, see:
For some selected examples on the synthesis and properties of cobalt-porphyrin complexes, see: