RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2014; 25(15): 2143-2148
DOI: 10.1055/s-0034-1378547
DOI: 10.1055/s-0034-1378547
letter
Synthesis of N-Benzothiazol-2-yl-amides by an Iron-Catalyzed Oxidative C(sp2)–H Functionalization
Weitere Informationen
Publikationsverlauf
Received: 13. Mai 2014
Accepted after revision: 29. Juni 2014
Publikationsdatum:
11. August 2014 (online)

Abstract
Catalytic synthesis of N-benzothiazol-2-yl-amides from 1-acyl-3-(phenyl)thioureas was achieved in the presence of an iron catalyst through C(sp2)–H functionalization and C–S bond formation. Various N-benzothiazol-2-yl-amides were selectively obtained in good yields.
-
References and Notes
- 1a Hutchinson I, Bradshaw TD, Matthews CS, Stevens MF. G, Westwell AD. Bioorg. Med. Chem. Lett. 2003; 13: 471
- 1b Huang ST, Hsei IJ, Chen C. Bioorg. Med. Chem. 2006; 14: 6106
- 1c Ćaleta I, Kralj M, Arjanović M, Bertoša B, Tomić S, Pavlović G, Pavlić KI, Karminski-Zamola G. J. Med. Chem. 2009; 52: 1744
- 2a Parlati F, Ramesh UV, Singh RP, Donald G, Lowe R, Look GC. WO 2005037845, 2005
- 2b Yoshida M, Hayakawa I, Hayashi N, Agatsuma T, Oda Y, Tanzawa F, Iwasaki S, Koyama K, Furukawa H, Kurakatad S, Suganob Y. Bioorg. Med. Chem. Lett. 2005; 15: 3328
- 2c Bailey TR, Pevear DC. WO 2004078115, 2004
- 2d Alanine A, Flohr A, Miller AK, Norcross RD, Riemer C. WO 2001097786, 2001
- 2e Kerwin S, Hurley LH, De Luca MR, Moore BM. WO 9748694, 1997
- 2f Brade AR, Khadse HB, Bobade AS. Indian Drugs 1998; 35: 554
- 3a Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
- 3b Partyka DV. Chem. Rev. 2011; 111: 1529
- 4a Yu H, Zhang M, Li Y. J. Org. Chem. 2013; 78: 8898
- 4b Deng H, Li Z, Ke F, Zhou X. Chem. Eur. J. 2012; 18: 4840
- 4c Xu HJ, Zhao YQ, Feng T, Feng YS. J. Org. Chem. 2012; 77: 2878
- 4d Prasad DJ. C, Sekar G. Org. Lett. 2011; 13: 1008
- 4e Sun LL, Deng CL, Tang RY, Zhang XG. J. Org. Chem. 2011; 76: 7546
- 4f Kao HL, Lee CF. Org. Lett. 2011; 13: 5204
- 4g Ke F, Qu Y, Jiang Z, Li Z, Wu D, Zhou X. Org. Lett. 2011; 13: 454
- 4h Chen D, Wang ZJ, Bao W. J. Org. Chem. 2010; 75: 5768
- 4i Li CL, Zhang XG, Tang RY, Zhong P, Li JH. J. Org. Chem. 2010; 75: 7037
- 4j You W, Yan X, Liao Q, Xi C. Org. Lett. 2010; 12: 3930
- 4k Jiang Y, Xie S, Qin Y, Zhang X, Ma D. Org. Lett. 2009; 11: 5250
- 4l Murru S, Mondal P, Yella R, Patel BK. Eur. J. Org. Chem. 2009; 5406
- 4m Murru S, Ghosh H, Sahoo SK, Patel BK. Org. Lett. 2009; 11: 4254
- 4n Bates CG, Saejueng P, Doherty MQ, Venkataraman D. Org. Lett. 2004; 6: 5005
- 4o Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
- 5a Qiao Z, Liu H, Xiao X, Fu Y, Wei J, Li Y, Jiang X. Org. Lett. 2013; 15: 2594
- 5b Kuhn M, Falk FC, Paradies J. Org. Lett. 2011; 13: 4100
- 5c Eichman CC, Stambuli JP. J. Org. Chem. 2009; 74: 4005
- 5d Dahl T, Tornoe CW, Bang-Andersen B, Nielsen P, Jorgensen M. Angew. Chem. Int. Ed. 2008; 47: 1726
- 5e Lee JY, Lee PH. J. Org. Chem. 2008; 73: 7413
- 5f Fernandez-Rodroeguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
- 5g Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
- 5h Itoh T, Mase T. Org. Lett. 2004; 6: 4587
- 5i Iwasaki M, Iyanaga M, Tsuchiya Y, Nishimura Y, Li W, Li Z, Nishihara Y. Chem. Eur. J. 2014; 20: 2459
- 6a Xu XB, Liu J, Zhang JJ, Wang YW, Peng Y. Org. Lett. 2013; 15: 550
- 6b Sakai N, Miyazaki T, Sakamoto T, Yatsuda T, Moriya T, Ikeda R, Konakahara T. Org. Lett. 2012; 14: 4366
- 6c Lin YY, Wang YJ, Lin CH, Cheng JH, Lee CF. J. Org. Chem. 2012; 77: 6100
- 6d Arisawa M, Ichikawa T, Yamaguchi M. Org. Lett. 2012; 14: 5318
- 6e Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 1697
- 6f Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189
- 6g Wu JR, Lin CH, Lee CF. Chem. Commun. 2009; 29: 4450
- 6h Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
- 6i Arisawa M, Suzuki T, Ishikawa T, Yamaguchi M. J. Am. Chem. Soc. 2008; 130: 12214
- 6j Zhang YG, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
- 6k Wong YC, Jayanth TT, Cheng CH. Org. Lett. 2006; 8: 5613
- 6l Yang Y, Hou W, Qin L, Du J, Feng H, Zhou B, Li Y. Chem. Eur. J. 2014; 20: 416
- 7a Wang H, Wang L, Shang J, Li X, Gui J, Lei A. Chem. Commun. 2012; 48: 76
- 7b Cheng Y, Yang J, Qu Y, Li P. Org. Lett. 2012; 14: 98
- 7c Ranjit S, Lee R, Heryadi D, Shen C, Wu JE, Zhang P, Huang K.-W, Liu X. J. Org. Chem. 2011; 76: 8999
- 7d Chu L, Yue X, Qing FL. Org. Lett. 2010; 12: 1644
- 7e Zhang S, Qian P, Zhang M, Hu M, Cheng J. J. Org. Chem. 2010; 75: 6732
- 7f Inamoto K, Hasegawa C, Hiroya K, Doi T. Org. Lett. 2008; 10: 5147
- 7g Inamoto K, Arai Y, Hiroya K, Doi T. Chem. Commun. 2008; 43: 5529
- 7h Zhang X, Zeng W, Yang Y, Huang H, Liang Y. Org. Lett. 2014; 16: 876
- 8 Wang JK, Peng F, Jiang JL, Lu ZJ, Wang LY, Bai JF, Pan Y. Tetrahedron Lett. 2008; 49: 467
- 9a Li Z, Cao L, Li CJ. Angew. Chem. Int. Ed. 2007; 46: 6505
- 9b Li Z, Yu R, Li H. Angew. Chem. Int. Ed. 2008; 47: 7497
- 9c Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
- 9d Wen J, Zhang J, Chen SY, Li J, Yu XQ. Angew. Chem. Int. Ed. 2008; 47: 8897
- 9e Li YZ, Li BJ, Lu XY, Lin S, Shi ZJ. Angew. Chem. Int. Ed. 2009; 48: 3817
- 9f Song CX, Cai GX, Farrell TR, Jiang ZP, Li H, Gan LB, Shi ZJ. Chem. Commun. 2009; 6002
- 9g Yoshikai N, Matsumoto A, Norinder J, Nakamura E. Angew. Chem. Int. Ed. 2009; 48: 2925
- 9h Jia F, Li ZP. Org. Chem. Front. 2014; 1: 194
- 10a Wang XC, Li Z, Tu Y, Da Y X. Synth. Commun. 2002; 32: 1113
- 10b Li Z, Wang XC. Synth. Commun. 2002; 32: 3087
- 11 General Procedure A round-bottom flask equipped with a stir bar was charged with FeCl3 (16.6 mg, 0.02 mmol), substituted 1-acetyl-3-(phenyl)thiourea (2 mmol) and Na2S2O8 (245.0 mg, 2.0 mmol). DMSO (5 mL) was added to the reaction flask. The mixture was stirred at 100 °C for 1 h. After cooling to r.t., the reaction mixture was quenched with H2O and extracted with EtOAc (2 × 20 mL). The organic layers were combined, dried over Na2SO4, concentrated under reduced pressure, and then purified by silica gel chromatography (acetone–PE, 1:4) to yield the desired product. N-{Naphtho[1,2-d]thiazol-2-yl}acetamide (2i) A green solid (80% yield); mp 309–310 °C. IR: ν = 3167.4, 3047.5, 2997.3, 2359.9, 1559.0 cm–1. 1H NMR (400 MHz, DMSO): δ = 12.57 (s, 1 H), 8.51 (dd, J = 8.2, 0.6 Hz, 1 H), 8.05 (dd, J = 8.3, 5.0 Hz, 2 H), 7.82 (d, J = 8.6 Hz, 1 H), 7.63 (dddd, J = 29.3, 8.2, 6.9, 1.3 Hz, 2 H), 2.25 (s, 3 H). 13C NMR (100 MHz, DMSO): δ = 169.70 (s), 158.46 (s), 144.74 (s), 132.26 (s), 128.75 (s), 127.58 (s), 127.31 (s), 127.01 (s), 126.23 (s), 124.18 (s), 123.16 (s), 120.02 (s), 23.16 (s). HRMS: m/z calcd for C13H10N2OS [M]+: 242.0514; found: 242.0519. N-{6-Methoxybenzo[d]thiazol-2-yl}cyclopentane-carboxamide (2j) A brown solid (80% yield); mp 172–175 °C. IR: ν = 3178.3, 3066.2, 2930.6, 2360.0, 1605.9 cm–1. 1H NMR (400 MHz, CDCl3): δ = 10.88 (s, 1 H), 7.66 (d, J = 8.9 Hz, 1 H), 7.32 (d, J = 2.5 Hz, 1 H), 7.05 (dd, J = 8.9, 2.6 Hz, 1 H), 3.89 (s, 3 H), 2.33 (tt, J = 11.7, 3.5 Hz, 1 H), 1.94–1.82 (m, 2 H), 1.79–1.69 (m, 2 H), 1.66–1.47 (m, 3 H), 1.22–1.00 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 174.71 (s), 157.66 (s), 156.83 (s), 142.01 (s), 133.26 (s), 121.02 (s), 115.32 (s), 104.33 (s), 55.86 (s), 44.99 (s), 29.23 (s), 25.34 (s). HRMS: m/z calcd for C15H18N2O2S [M + H]+: 291.1167; found: 291.1172.
For selected examples, see:
For recent reviews on transition-metal-catalyzed C–S coupling reactions, see:
For selected examples of copper-catalyzed reactions, see:
For selected examples of palladium-catalyzed reactions, see:
For selected examples of other metal-catalyzed reactions, see: