Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(02): 279-288
DOI: 10.1055/s-0034-1378673
DOI: 10.1055/s-0034-1378673
paper
Exploiting Palladium-Catalyzed Cross-Coupling for the Synthesis of 2-Aryl-Substituted 1-Aminocyclopropylphosphonates
Further Information
Publication History
Received: 06 August 2014
Accepted after revision: 07 September 2014
Publication Date:
15 October 2014 (online)
Abstract
A series of 2-aryl-substituted 1-aminocyclopropylphosphonates containing an additional remote phosphonate group have been synthesized starting from readily accessible dimethyl (1R*,2R*)-2-(4-bromophenyl)-1-formamidocyclopropylphosphonate using cross-coupling methodology. Different types of palladium-catalyzed reactions for carbon–carbon and carbon–phosphorus bond formation were realized. In each case the optimum conditions were found to obtain the desired products in high yield in both small- and large-scale experiments.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000084.
- Supporting Information
-
References
- 1 Gulyukina NS, Makukhin NN, Beletskaya IP. Russ. J. Org. Chem. 2011; 47: 633
- 2 Erion MD, Walsh CT. Biochemistry 1987; 26: 3417
- 3a Karthikeyan S, Zhou Q, Zhao Z, Kao C.-L, Tao Z, Robinson H, Liu H.-w, Zhang H. Biochemistry 2004; 43: 13328
- 3b Karthikeyan S, Zhao Z, Kao C.-L, Zhou Q, Tao Z, Zhang H, Liu H.-w. Angew. Chem. Int. Ed. 2004; 43: 3425
- 4 Hercouet A, Le Corre M, Carboni B. Tetrahedron Lett. 2000; 41: 197
- 5 Wąsek K, Kędzia J, Krawczyk H. Tetrahedron: Asymmetry 2010; 21: 2081
- 6a Pyun HJ, Clarke MO, Cho A, Casarez A, Ji MZ, Fardis M, Pastor R, Sheng XC, Kim CU. Tetrahedron Lett. 2012; 53: 2360
- 6b Pompei M, Di Francesco ME, Koch U, Liverton NJ, Summa V. Bioorg. Med. Chem. Lett. 2009; 19: 2574 ; and references cited therein
- 7a Kukhar VP, Hudson HR. Aminophosphinic and Aminophosphonic Acids: Chemistry and Biological Activity. John Wiley & Sons; Chichester: 1999
- 7b Galezowska J, Gumienna-Kontecka E. Coord. Chem. Rev. 2012; 256: 105
- 7c Orsini F, Sello G, Sisti M. Curr. Med. Chem. 2010; 17: 264
- 7d Ordonez M, Rojas-Cabrera H, Cativiela C. Tetrahedron 2009; 65: 17
- 7e Groger H, Hammer B. Chem. Eur. J. 2000; 6: 943
- 7f Kafarski P, Lejczak B. Phosphorus, Sulfur Silicon Relat. Elem. 1991; 63: 193
- 7g Uziel J, Genet JP. Russ. J. Org. Chem. 1997; 33: 1521
- 7h Kukhar VP, Solodenko VA. Russ. Chem. Rev. 1987; 56: 859
- 8a Cativiela C, Ordonez M. Tetrahedron: Asymmetry 2009; 20: 1
- 8b Brackmann F, de Meijere A. Chem. Rev. 2007; 107: 4493
- 9a Midura WH, Rzewnicka A. Tetrahedron: Asymmetry 2013; 24: 937
- 9b Phillips AM. F, Barros MT. Eur. J. Org. Chem. 2014; 152
- 10 Goulioukina NS, Makukhin NN, Beletskaya IP. Tetrahedron 2011; 67: 9535
- 11 Bujoli B, Janvier P, Petit M. Application of Metal Phosphonates to Biotechnologies . In Metal Phosphonate Chemistry: From Synthesis to Applications . Clearfield A, Demadis K. The Royal Society of Chemistry; Cambridge: 2012. Chap. 13, 420-437
- 12 Behr LC, Fusco R, Jarboe CH. Chemistry of the Pyrazolines. In Chemistry of Heterocyclic Compounds: Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings. Vol. 22. Wiley RH. Interscience; New York: 1967
- 13a Duddeck H, Lecht R. Phosphorus Sulfur Relat. Elem. 1987; 29: 169
- 13b Katzhendler J, Ringel I, Karaman R, Zaher H, Breuer E. J. Chem. Soc., Perkin Trans. 2 1997; 341
- 14 Crystallographic data for the structures have been deposited at the Cambridge Crystallographic Data Centre (CCDC), deposition numbers: 959780 (5), 959781 [(1R*,2R*)-6]. Copies of these data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ; fax: +44(1223)335033 or e-mail: deposit@ccdc.cam.ac.uk.
- 15 Kumar R, Verma D, Mobin SM, Namboothiri IN. N. Org. Lett. 2012; 14: 4070
- 16 Sammes PG. Heterocyclic Compounds. In Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds. Vol. 4. Barton D, Ollis WD. Pergamon; Oxford: 1979
- 17a Hirao T, Masunaga T, Ohshiro Y, Agawa T. Tetrahedron Lett. 1980; 21: 3595
- 17b Hirao T, Masunaga T, Ohshiro Y, Agawa T. Synthesis 1981; 56
- 17c Hirao T, Masunaga T, Yamada N, Ohshiro Y, Agawa T. Bull. Chem. Soc. Jpn. 1982; 55: 909
- 18a Jablonkai E, Keglevich G. Org. Prep. Proced. Int. 2014; 46: 281
- 18b Zon J, Garczarek P, Bialek M. Synthesis of Phosphonic Acids and Their Esters as Possible Substrates for Reticular Chemistry. In Metal Phosphonate Chemistry: From Synthesis to Applications. Clearfield A, Demadis K. The Royal Society of Chemistry; Cambridge: 2012. Chap 6, 170-191
- 18c Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
- 18d Tappe FM. J, Trepohl VT, Oestreich M. Synthesis 2010; 3037
- 18e Schwan AL. Chem. Soc. Rev. 2004; 33: 218
- 18f Beletskaya IP, Kazankova MA. Russ. J. Org. Chem. 2002; 38: 1391
- 18g Prim D, Campagne JM, Joseph D, Andrioletti B. Tetrahedron 2002; 58: 2041
- 19a Lera M, Hayes CJ. Org. Lett. 2000; 2: 3873
- 19b Terinek M, Vasella A. Helv. Chim. Acta 2004; 87: 719
- 19c Tran G, Pardo DG, Tsuchiya T, Hillebrand S, Vors JP, Cossy J. Org. Lett. 2013; 15: 5550
- 20 Kohler MC, Sokol JG, Stockland RA. Jr. Tetrahedron Lett. 2009; 50: 457
- 21 Kohler MC, Grimes TV, Wang X, Cundari TR, Stockland RA. Organometallics 2009; 28: 1193
- 22a Kalek M, Stawinski J. Organometallics 2007; 26: 5840
- 22b Ananikov VP, Ivanova JV, Khemchyan LL, Beletskaya IP. Eur. J. Org. Chem. 2012; 3830
- 23a Sutherland IO. Nitrogen Compounds, Carboxylic Acids, Phosphorus Compounds. In Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds. Vol. 2. Barton D, Ollis WD. Pergamon; Oxford: 1979
- 23b See ref. 10 and references cited therein.
- 24a Kalek M, Jezowska M, Stawinski J. Adv. Synth. Catal. 2009; 351: 3207
- 24b Aluri BR, Kindermann MK, Jones PG, Dix I, Heinicke J. Inorg. Chem. 2008; 47: 6900
- 24c Belabassi Y, Alzghari S, Montchamp J.-L. J. Organomet. Chem. 2008; 693: 3171
- 24d Berger O, Petit C, Deal EL, Montchamp JL. Adv. Synth. Catal. 2013; 355: 1361
- 24e Bessmertnykh A, Douaihy CM, Muniappan S, Guilard R. Synthesis 2008; 1575
- 24f Mitrofanov A, Bessmertnykh Lemeune A, Stern C, Guilard R, Gulyukina N, Beletskaya I. Synthesis 2012; 44: 3805
- 24g Thielges S, Meddah E, Bisseret P, Eustache J. Tetrahedron Lett. 2004; 45: 907
- 24h Abbas S, Bertram RD, Hayes CJ. Org. Lett. 2001; 3: 3365
- 25a Xu K, Hu H, Yang F, Wu Y. Eur. J. Org. Chem. 2013; 319
- 25b Kalek M, Ziadi A, Stawinski J. Org. Lett. 2008; 10: 4637
- 25c Kabachnik MM, Solntseva MD, Izmer VV, Novikova ZS, Beletskaya IP. Russ. J. Org. Chem. 1998; 34: 93
- 26a Pennington MW, Beeton C, Galea CA, Smith BJ, Chi V, Monaghan KP, Garcia A, Rangaraju S, Giuffrida A, Plank D, Crossley G, Nugent D, Khaytin I, LeFievre Y, Peshenko I, Dixon C, Chauhan S, Orzel A, Inoue T, Hu X, Moore RV, Norton RS, Chandy KG. Mol. Pharmacol. 2009; 75: 762
- 26b Chauhan SS, Varshney A, Verma B, Pennington MW. Tetrahedron Lett. 2007; 48: 4051
- 26c Oishi S, Kang S.-U, Liu H, Zhang M, Yang D, Deschamps JR, Burke TR. Jr. Tetrahedron 2004; 60: 2971
- 26d Liu W.-Q, Vidal M, Olszowy C, Million E, Lenoir C, Dhôtel H, Garbay C. J. Med. Chem. 2004; 47: 1223
- 26e Liu W.-Q, Carreaux F, Meudal H, Roques BP, Garbay-Jaureguiberry C. Tetrahedron 1996; 52: 4411
- 27a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 27b Suzuki A. J. Organomet. Chem. 1999; 576: 147
- 27c Suzuki A. J. Organomet. Chem. 2002; 653: 83
- 28 A mixture (77:23) of two rotamers in CDCl3. 31P NMR (121 MHz, CDCl3): δ = 22.45 (major), 23.42 (minor); 1H NMR (300 MHz, CDCl3): δ (major rotamer) = 1.66 (m, 1 H, 3-Hcycle, minor), 2.13 (m, 1 H, 3-Hcycle), 2.58 (m, 1 H, 2-Hcycle), 3.03 (s, 3 H, CH3), 3.42 (d, 3 J P,H = 10.9 Hz, 3 H, OCH3), 3.43 (d, 3 J P,H = 10.7 Hz, 3 H, OCH3), 7.22 (d, 3 J H,H = 8.5 Hz, 2 H, Ar), 7.45 (d, 3 J H,H = 8.5 Hz, 2 H, Ar), 8.36 (s, 1 H, CHO); 13C NMR (75 MHz, CDCl3): δ (major rotamer) = 17.7 (СН2), 24.6 (СН3), 30.5 (СН), 41.8 (J C,P = 219.5 Hz, CH), 52.5 (J C,P = 6.6 Hz, OСН3), 52.7 (J C,P = 6.9 Hz, OСН3), 121.3 (Ar), 131.0 (4 C, Ar), 132.9 (J C,P = 4.0 Hz, Ar), 164.7 (CO); HRMS (ESI): m/z [M + Na]+ calcd for C13H17BrNNaO4P: 385.9956; found: 385.9937.
- 29 Beletskaya IP, Cheprakov AV. Focus on Catalyst Development and Ligand Design . In The Mizoroki–Heck Reaction . Oestreich M. John Wiley & Sons; New York: 2009: 51-132
- 30a Al-Maksoud W, Mesnager J, Jaber F, Pinel C, Djakovitch L. J. Organomet. Chem. 2009; 694: 3222
- 30b Tarabay J, Al-Maksoud W, Jaber F, Pinel C, Prakash S, Djakovitch L. Appl. Catal., A 2010; 388: 124
- 30c Xu Y, Jin X, Huang G, Huang Y. Synthesis 1983; 556
- 30d Bigge CF, Drummond JT, Johnson G, Malone T, Probert AW, Marcoux FW, Coughenour LL, Brahce LJ. J. Med. Chem. 1989; 32: 1580
- 31a Herrmann WA, Brossmer C, Reisinger C.-P, Riermeier TH, Öfele K, Beller M. Chem. Eur. J. 1997; 3: 1357
- 31b Shaughnessy KH, Kim P, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 2123
- 31c Spencer A. J. Organomet. Chem. 1983; 258: 101
- 31d Ziegler CB, Heck RF. J. Org. Chem. 1978; 43: 2941
- 32 Schollkopf U, Hoppe I, Thiele A. Liebigs Ann. Chem. 1985; 555
- 33 Ishiyama T, Murata M, Miyaura N. J. Org. Chem. 1995; 60: 7508
We have chosen Pd(dba)2 rather than the most commonly used Pd(OAc)2 to simplify the arrangement of the catalytic cycle avoiding the pre-stage of Pd(II) reduction and the problem of the following competitive oxidative addition with aryl halide (with starting of the catalytic cycle) or with H-phosphonate (with formation of catalytically inactive Pd(II) species):
The NMR spectra of the formamide compounds 1, 4, 6, 8, 9, 13, 14 reveal two sets of signals corresponding to a pair of rotamers arising from the resonance stabilization within formamide moiety. For details see:
Other examples of diethyl vinylphosphonate in the Mizoroki–Heck reaction:
For beneficial effects of tri-o-tolylphosphine see: