Synlett 2015; 26(13): 1867-1871
DOI: 10.1055/s-0034-1378721
letter
© Georg Thieme Verlag Stuttgart · New York

Ring-Closing Metathesis Reactions of Acyloxysulfones: Synthesis of γ-Alkylidene Butenolides

Iris T. Phan
Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA   Email: oneil@chem.wwu.edu
,
Garrett J. Gilbert
Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA   Email: oneil@chem.wwu.edu
,
Gregory W. O’Neil*
Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA   Email: oneil@chem.wwu.edu
› Author Affiliations
Further Information

Publication History

Received: 25 March 2015

Accepted after revision: 05 May 2015

Publication Date:
26 June 2015 (online)


Abstract

An acyloxysulfone ring-closing metathesis/sulfone elimination sequence has been developed for the preparation of various γ-alkylidene butenolides. The elimination is proposed to proceed via an E1cb mechanism leading to (Z)-γ-alkylidene butenolides as the major products.

Supporting Information

 
  • References and Notes

    • 2a For a recent review see: Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
    • 2b See also: Urbina-Blanco CA, Guidone S, Nolan SP, Cazin CS. J. Ruthenium-Indenylidene and Other Alkylidene Containing Olefin Metathesis Catalysts. In Olefin Metathesis: Theory and Practice . Grela K. John Wiley & Sons, Inc; Hoboken: 2014
    • 3a Fürstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
    • 3b Metathesis in Natural Product Synthesis . Cossy J, Arseniyadis S, Meyer C. Wiley-VCH; Weinheim: 2010
  • 4 Chatterjee AK, Choi T.-L, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
  • 5 For a recent review see: Wojtkielewicz A. Curr. Org. Synth. 2013; 10: 43
    • 6a Bouzbouz S, Simmons R, Cossy J. Org. Lett. 2004; 6: 3465
    • 6b Ferrié L, Amans D, Reymond S, Bellosta V, Capdeville P, Cossy J. J. Organomet. Chem. 2006; 691: 5456
    • 6c Funk TW, Efskind J, Grubbs RH. Org. Lett. 2005; 7: 187
  • 7 O’Neil GW, Moser DJ, Volz EO. Tetrahedron Lett. 2009; 50: 7355
  • 8 Carter KP, Moser DJ, Storvick JM, O’Neil GW. Tetrahedron Lett. 2011; 52: 4494
  • 9 Storvick JK, Ankoudinova E, King BR, Van Epps H, O’Neil GW. Tetrahedron Lett. 2011; 52: 5858
  • 10 Trnka TM, Grubbs RH. Acc. Chem. Res. 2001; 34: 18
  • 11 Crimmins MT, Zhang Y, Diaz FA. Org. Lett. 2006; 8: 2369
  • 12 For a discussion on sulfone/ruthenium interactions in RCM, see: Paquette LA, Fabris F, Tae J, Gallucci JC, Hofferberth JE. J. Am. Chem. Soc. 2000; 122: 3391
  • 13 The stereochemistry of the major isomer was assigned as Z by comparison to previously reported spectral data: Uchiyama M, Ozawa H, Takuma K, Matsumoto Y, Yonehara M, Hiroya K, Sakamoto T. Org. Lett. 2006; 8: 5517
  • 14 For another report of γ-alkylidene butenolide synthesis by E1cb elimination, see: Shing TK. M, Tsui H-C, Zhou Z.-H. J. Org. Chem. 1995; 60: 3121
  • 15 Gronert S. J. Am. Chem. Soc. 1992; 114: 2349
  • 16 See: Novák P, Pour M, Špulák M, Votruba I, Kotora M. Synthesis 2008; 3465 ; and references cited therein

    • For other examples of butenolide synthesis by RCM, see:
    • 17a Mao B, Geurts K, Fañanás-Mastral M, van Zijl AW, Fletcher SP, Minnaard AJ, Feringa BL. Org. Lett. 2011; 13: 948
    • 17b Fujii M, Fukumura M, Hori Y, Hirai Y, Akita H, Nakamura K, Toriizuka K, Ida Y.-S. Tetrahedron: Asymmetry 2006; 17: 2292
  • 18 For an alternative synthesis of 14 and other γ-arylidenebutenolides by elimination with triethylamine, see: Pohmakotr M, Tuchinda P, Premkaisorn P, Reutrakul V. Tetrahedron 1998; 54: 11297

    • An E1cb mechanism is likely also operative in the following reports of γ-alkylidene butenolide syntheses:
    • 19a Takao K.-I, Yasui H, Yamamoto S, Sasaki D, Kawasaki S, Watanabe G, Tadano K.-I. J. Org. Chem. 2004; 69: 8789
    • 19b Hjelmgaard T, Persson T, Rasmussen TB, Givskov M, Nielsen J. Bioorg. Med. Chem. 2003; 11: 3261
    • 19c Wang L, Zhu W. Tetrahedron Lett. 2013; 54: 6729
    • 20a Compound 14: see ref. 11.
    • 20b Compound 15: Font J, Ortuno RM, Sanchez-Ferrando F, Segura C, Terris N. Synth. Commun. 1989; 19: 2977
    • 20c Compounds 16 and 17: Kanemasa S, Nakagawa N, Suga H, Tsuge O. Bull. Chem. Soc. Jpn. 1989; 62: 171
    • 20d Compound 19: Sorg A, Siegel K, Brueckner R. Synlett 2004; 321
  • 21 The stereochemistry of the major isomer 18 was assigned as Z by NOE NMR analysis (Figure 1):
  • 22 Jeon H.-S, Yeo JE, Jeong YC, Koo S. Synthesis 2004; 2813
  • 23 Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
  • 24 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
  • 25 Compound 25 was prepared from sulfone 26 in three steps (Scheme 8):
  • 26 CRC Handbook of Chemistry and Physics . 77th ed., Lide DR. CRC Press; Boca Raton: 1997
  • 27 Perez GV, Perez AL. J. Chem. Ed. 2000; 77: 910
  • 28 Typical Acyloxysulfone RCM Procedure; 5-[Phenyl(phenylsulfonyl)methyl]furan-2(5H)-one (8): To a solution of compound 2 (92 mg, 0.3 mmol) in degassed toluene (10 mL) at 80 °C was added catalyst Ru-II (3 × 6 mg, 0.02 mmol) over 18 h. The reaction was then cooled to r.t. and concentrated in vacuo. Purification by flash column chromatography on silica (hexanes–EtOAc, 4:1 to 1:1) gave compound 8 (54 mg, 64%) as an oil. 1H NMR (300 MHz, CDCl3): δ (mixture of diastereomers) = δ 7.93 (d, J = 9.5 Hz, 1 H), 7.70 (d, J = 7.6 Hz, 2 H), 7.66 (d, J = 5.7 Hz, 1 H), 7.60–7.53 (m, 2 H), 7.50 (d, J = 7.6 Hz, 2 H), 7.44 (t, J = 7.8 Hz, 2 H), 7.36–7.32 (m, 4 H), 7.28–7.25 (m, 3 H), 7.21–7.17 (m, 3 H), 7.08 (d, J = 12.3 Hz, 2 H), 6.17 (dd, J = 9.5, 2.7 Hz, 1 H), 6.11 (dd, J = 5.7, 1.7 Hz, 1 H), 6.00 (d, J = 7.0 Hz, 1 H), 5.96 (d, J = 6.2 Hz, 1 H), 4.52 (d, J = 6.2 Hz, 1 H), 4.23 (d, J = 7.1 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ (mixture of diastereomers) = 171.6, 171.1, 154.4, 153.5, 137.8, 136.5, 134.2, 130.4, 130.0, 129.7, 129.5, 129.2, 129.0, 128.9, 128.8, 128.7, 127.7, 123.3, 122.6, 79.7, 79.6, 73.5, 72.8. General One-Pot RCM/Elimination Procedure: (Z)-5-(3-Phenylpropylidene)furan-2(5H)-one (18). To a solution of compound 5 (0.21 g, 0.55 mmol) in toluene (30 mL) at 80 °C was added batchwise catalyst Ru-II (3 × 12 mg, 0.04 mmol) over 18 h. The reaction was then cooled to 0 °C before adding Et3N (0.47 mL, 3.4 mmol) and the mixture was allowed to slowly warm to r.t. over 12 h. The reaction was quenched with H2O (10 mL) and extracted with CH2Cl2 (2 × 10 mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. Purification by flash column chromatography on florisil (hexanes–EtOAc, 4:1) gave 18 (59 mg, 54%) as a 5:1 mixture of Z/E isomers. Spectral data for the major isomer: IR (ATR): 1772, 1732, 1496, 1151, 1074, 700 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.35–7.30 (m, 3 H), 7.26–7.23 (m, 3 H), 6.18 (d, J = 5.5 Hz, 1 H), 5.31 (t, J = 7.7 Hz, 1 H), 2.86–2.75 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 170.0, 150.0, 143.5, 140.7, 128.5, 128.4, 126.3, 119.3, 116.2, 34.9, 27.9.