Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(14): 2019-2023
DOI: 10.1055/s-0034-1378784
DOI: 10.1055/s-0034-1378784
letter
A Concise and Versatile Total Synthesis of All Stereoisomers of Tarchonanthuslactone
Further Information
Publication History
Received: 25 March 2015
Accepted after revision: 10 June 2015
Publication Date:
30 July 2015 (online)
Abstract
We describe the versatile and concise total synthesis of all stereoisomers of tarchonanthuslactone from (R)- or (S)-3-hydroxybutyrate via eight steps. The key steps of the synthesis include a highly diastereoselective chelation-controlled Mukaiyama aldol reaction of a p-methoxybenzyl-protected aldehyde and a Yamaguchi lactonization of a δ-hydroxy-trans-α,β-unsaturated carboxylic acid.
Key words
total synthesis - tarchonanthuslactone - chelation-controlled Mukaiyama aldol reaction - δ-hydroxy-trans-α,β-unsaturated carboxylic acid - Yamaguchi lactonizationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378784.
- Supporting Information
-
References and Notes
- 1 These two authors contributed equally to this work.
- 2a Jodynis-Liebert J, Murias M, Bloszyk E. Planta Med. 2000; 66: 199
- 2b Drewes SE, Schlapelo BM, Horn MM, Scott-Shaw R, Sandor O. Phytochemistry 1995; 38: 1427
- 3 Bohlmann F, Suwita A. Phytochemistry 1979; 18: 677
- 4 Hsu FL, Chen YC, Cheng JT. Planta Med. 2000; 66: 228
- 5a Nakata T, Hata N, Iida K, Oishi T. Tetrahedron Lett. 1987; 28: 5661
- 5b Mori Y, Suzuki M. J. Chem. Soc., Perkin Trans. 1 1990; 1809
- 5c Solladié G, Gressot-Kempf L. Tetrahedron: Asymmetry 1996; 7: 2371
- 5d Reddy MV. R, Yucel AJ, Ramachandran PV. J. Org. Chem. 2001; 66: 2512
- 5e Garaas SD, Hunter TJ, O’Doherty GA. J. Org. Chem. 2002; 67: 2682
- 5f Enders D, Steinbusch D. Eur. J. Org. Chem. 2003; 4450
- 5g Sabitha G, Sudhakar K, Reddy NM, Rajkumar M, Yadav JS. Tetrahedron Lett. 2005; 46: 6567
- 5h Gupta P, Naidu SV, Kumar P. Tetrahedron Lett. 2005; 46: 6571
- 5i Baktharaman S, Selvakumar S, Singh VK. Tetrahedron Lett. 2005; 46: 7527
- 5j Scott MS, Luckhurst CA, Dixon DJ. A. Org. Lett. 2005; 7: 5813
- 5k Yadav JS, Kumar NN. Reddy M. S, Prasad AR. Tetrahedron 2007; 63: 2689
- 5l George S, Sudalai A. Tetrahedron: Asymmetry 2007; 18: 975
- 5m Lee H.-Y, Sampath V, Yoon Y. Synlett 2009; 249
- 5n Huang SP, Liu DW, Tang LJ, Huang FF, Zhang JT, Wang XJ. Synth. Commun. 2015; 1240
- 6 Ono M, Zhao XY, Shida Y, Akita H. Tetrahedron 2007; 63: 10140
- 7a Peuchmaur M, Wong Y.-S. J. Org. Chem. 2007; 72: 5374
- 7b Evans DA, Dart MJ, Duffy JL, Yang MG. J. Am. Chem. Soc. 1996; 118: 4322
- 7c Evans DA, Carter PH, Carreira EM, Charete AB, Prunet JA, Lautens M. J. Am. Chem. Soc. 1999; 121: 7540
- 7d Perry NB, Blunt JW, McCombs JD. Munro M. H. G. J. Org. Chem. 1986; 51: 5478
- 8 Ratjen L, García-García P, Lay F, Beck ME, List B. Angew. Chem. Int. Ed. 2011; 50: 754
- 9 Joly GD, Jacobsen EN. Org. Lett. 2002; 4: 1795
- 10 Li SK, Xu R, Bai DL. Tetrahedron Lett. 2000; 41: 3463
- 11 Christmann M, Kalesse M. Tetrahedron Lett. 1999; 40: 7201
- 12 The stereochemistry of the new stereogenic center of 3 and its syn isomer were determined by NOESY spectra after protection of the diol with PMB group (Scheme 6).
- 13 Experimental Procedure To a solution of 3 (530 mg, 1.72 mmol) in THF–MeOH–H2O (2:1:1, 40 mL) was added LiOH (824 mg, 34.4 mmol) at r.t. and then kept the reaction stirring for 1 h. After that, the mixture was acidified with a solution of 1 M aq HCl to pH 5–6. Then it was extracted with CH2Cl2 (3 × 100 mL). The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure to afford the crude acid which was used for the next reaction without further purification. Subsequently, to the above crude acid in the solution of CH2Cl2 (0.5 mL) and pyridine (4.4 mL) was added 2,4,6,-trichlorobenzoyl chloride (0.3 mL, 1.9 mmol) at 0 °C. The resulting mixture was stirred for 1 h before being quenched with a solution of sat. NaHCO3 (15 mL). The resulting mixture was extracted with CH2Cl2 (3 × 15 mL). The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. Purification by flash chromatography (hexane–EtOAc, 1:1) offered the desired compound 7 (414 mg, 87% yield) as a yellow oil. [α]D 25 –79.3 (c 0.44, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 7.11 (d, J = 8.4 Hz, 2 H), 6.73–6.70 (m, 3 H), 5.87 (d, J = 10.0 Hz, 1 H), 4.54–4.47 (m, 1 H), 4.42 (d, J = 10.8 Hz, 1 H), 4.21 (d, J = 10.8 Hz, 1 H), 3.83–3.74 (m, 1 H), 3.65 (s, 3 H), 2.21–2.10 (m, 2 H), 1.75–1.69 (m, 1 H), 1.61–1.55 (m, 1 H), 1.08 (d, J = 6.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 164.3, 159.1, 145.2, 130.6, 129.3, 121.2, 113.7, 74.8, 70.7, 70.4, 55.2, 42.9, 29.8, 19.8. ESI-HRMS: m/z calcd for C16H20O4Na [M + Na]+: 299.1254; found: 299.1252.
- 14 (+)-7-epi-Tarchonanthuslactone [α]D 25 26.5(c 0.78, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 6.87–6.84(m, 1 H), 6.73–6.68 (m, 2 H), 6.53 (d, J = 8.0 Hz, 1 H), 5.99 (d, J = 10.0 Hz, 1 H), 5.14–5.11 (m, 1 H), 4.14–4.08 (m, 1 H), 2.79 (t, J = 6.8 Hz, 2 H), 2.57 (t, J = 6.8 Hz, 2 H), 2.22–2.20 (m, 2 H), 1.85–1.76 (m, 2 H), 1.20 (d, J = 6.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 173.0, 165.3, 145.9, 143.8, 142.5, 132.4, 120.7, 120.1, 115.2, 74.5, 67.1, 41.1, 36.1, 30.2, 29.4, 20.4. ESI-HRMS: m/z calcd for C17H20O6Na [M + Na]+: 343.1152; found: 343.1149.
- 15 (+)-Tarchonanthuslactone [α]D 25 56.8 (c 0.41, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 6.84–6.72 (m, 3 H), 6.57 (d, J = 8.0 Hz, 2 H), 6.00 (d, J = 10.0 Hz, 1 H), 5.07–5.05 (m, 1 H), 4.19–4.10 (m, 1 H), 2.82 (t, J = 6.8 Hz, 2 H), 2.60 (t, J = 7.2 Hz, 2 H), 2.26–2.05 (m, 3 H), 1.77–1.72 (m, 1 H), 1.24 (d, J = 6.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.9, 165.2, 145.7, 144.0, 142.4, 132.6, 120.8, 120.3, 115.4, 75.2, 67.2, 40.8, 35.9, 30.1, 29.0, 20.4. ESI-HRMS: m/z calcd for C17H20O6Na [M + Na]+: 343.1152; found: 343.1152.
See for example, see: