Synlett 2015; 26(14): 2019-2023
DOI: 10.1055/s-0034-1378784
letter
© Georg Thieme Verlag Stuttgart · New York

A Concise and Versatile Total Synthesis of All Stereoisomers of Tarchonanthuslactone

Shuangping Huang
a   School of Pharmacy, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China   Email: 2012207455@tju.edu.cn
,
Dongwang Liu
a   School of Pharmacy, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China   Email: 2012207455@tju.edu.cn
,
Linjun Tang
b   School of Life Science, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China
,
Feifei Huang
a   School of Pharmacy, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China   Email: 2012207455@tju.edu.cn
,
Wei Yang
c   Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055 Shenzhen, Guangdong, P. R. of China
,
Xiaoji Wang*
a   School of Pharmacy, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China   Email: 2012207455@tju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 25 March 2015

Accepted after revision: 10 June 2015

Publication Date:
30 July 2015 (online)


Abstract

We describe the versatile and concise total synthesis of all stereoisomers of tarchonanthuslactone from (R)- or (S)-3-hydroxybutyrate via eight steps. The key steps of the synthesis include a highly diastereoselective chelation-controlled Mukaiyama aldol reaction of a p-methoxybenzyl-protected aldehyde and a Yamaguchi lactonization of a δ-hydroxy-trans-α,β-unsaturated carboxylic acid.

Supporting Information

 
  • References and Notes

  • 1 These two authors contributed equally to this work.
  • 3 Bohlmann F, Suwita A. Phytochemistry 1979; 18: 677
  • 4 Hsu FL, Chen YC, Cheng JT. Planta Med. 2000; 66: 228
  • 6 Ono M, Zhao XY, Shida Y, Akita H. Tetrahedron 2007; 63: 10140
  • 8 Ratjen L, García-García P, Lay F, Beck ME, List B. Angew. Chem. Int. Ed. 2011; 50: 754
  • 9 Joly GD, Jacobsen EN. Org. Lett. 2002; 4: 1795
  • 10 Li SK, Xu R, Bai DL. Tetrahedron Lett. 2000; 41: 3463
  • 11 Christmann M, Kalesse M. Tetrahedron Lett. 1999; 40: 7201
  • 12 The stereochemistry of the new stereogenic center of 3 and its syn isomer were determined by NOESY spectra after protection of the diol with PMB group (Scheme 6).
  • 13 Experimental Procedure To a solution of 3 (530 mg, 1.72 mmol) in THF–MeOH–H2O (2:1:1, 40 mL) was added LiOH (824 mg, 34.4 mmol) at r.t. and then kept the reaction stirring for 1 h. After that, the mixture was acidified with a solution of 1 M aq HCl to pH 5–6. Then it was extracted with CH2Cl2 (3 × 100 mL). The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure to afford the crude acid which was used for the next reaction without further purification. Subsequently, to the above crude acid in the solution of CH2Cl2 (0.5 mL) and pyridine (4.4 mL) was added 2,4,6,-trichlorobenzoyl chloride (0.3 mL, 1.9 mmol) at 0 °C. The resulting mixture was stirred for 1 h before being quenched with a solution of sat. NaHCO3 (15 mL). The resulting mixture was extracted with CH2Cl2 (3 × 15 mL). The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. Purification by flash chromatography (hexane–EtOAc, 1:1) offered the desired compound 7 (414 mg, 87% yield) as a yellow oil. [α]D 25 –79.3 (c 0.44, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 7.11 (d, J = 8.4 Hz, 2 H), 6.73–6.70 (m, 3 H), 5.87 (d, J = 10.0 Hz, 1 H), 4.54–4.47 (m, 1 H), 4.42 (d, J = 10.8 Hz, 1 H), 4.21 (d, J = 10.8 Hz, 1 H), 3.83–3.74 (m, 1 H), 3.65 (s, 3 H), 2.21–2.10 (m, 2 H), 1.75–1.69 (m, 1 H), 1.61–1.55 (m, 1 H), 1.08 (d, J = 6.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 164.3, 159.1, 145.2, 130.6, 129.3, 121.2, 113.7, 74.8, 70.7, 70.4, 55.2, 42.9, 29.8, 19.8. ESI-HRMS: m/z calcd for C16H20O4Na [M + Na]+: 299.1254; found: 299.1252.
  • 14 (+)-7-epi-Tarchonanthuslactone [α]D 25 26.5(c 0.78, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 6.87–6.84(m, 1 H), 6.73–6.68 (m, 2 H), 6.53 (d, J = 8.0 Hz, 1 H), 5.99 (d, J = 10.0 Hz, 1 H), 5.14–5.11 (m, 1 H), 4.14–4.08 (m, 1 H), 2.79 (t, J = 6.8 Hz, 2 H), 2.57 (t, J = 6.8 Hz, 2 H), 2.22–2.20 (m, 2 H), 1.85–1.76 (m, 2 H), 1.20 (d, J = 6.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 173.0, 165.3, 145.9, 143.8, 142.5, 132.4, 120.7, 120.1, 115.2, 74.5, 67.1, 41.1, 36.1, 30.2, 29.4, 20.4. ESI-HRMS: m/z calcd for C17H20O6Na [M + Na]+: 343.1152; found: 343.1149.
  • 15 (+)-Tarchonanthuslactone [α]D 25 56.8 (c 0.41, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 6.84–6.72 (m, 3 H), 6.57 (d, J = 8.0 Hz, 2 H), 6.00 (d, J = 10.0 Hz, 1 H), 5.07–5.05 (m, 1 H), 4.19–4.10 (m, 1 H), 2.82 (t, J = 6.8 Hz, 2 H), 2.60 (t, J = 7.2 Hz, 2 H), 2.26–2.05 (m, 3 H), 1.77–1.72 (m, 1 H), 1.24 (d, J = 6.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.9, 165.2, 145.7, 144.0, 142.4, 132.6, 120.8, 120.3, 115.4, 75.2, 67.2, 40.8, 35.9, 30.1, 29.0, 20.4. ESI-HRMS: m/z calcd for C17H20O6Na [M + Na]+: 343.1152; found: 343.1152.