Synthesis 2015; 47(01): 134-140
DOI: 10.1055/s-0034-1379043
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Asymmetric Allylic Alkylation Reaction of 2-Mono­substituted Indolin-3-ones

Tie-Gen Chen
a   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Ping Fang
a   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Xue-Long Hou*
a   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
b   Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   Email: xlhou@sioc.ac.cn
,
Li-Xin Dai
a   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 16 July 2014

Accepted after revision: 08 August 2014

Publication Date:
29 September 2014 (online)

 


Abstract

An efficient and practical method was developed for the synthesis of 2,2-disubstituted indolin-3-ones by palladium-catalyzed asymmetric allylic alkylation. Enantioselective construction of quaternary carbon centers was also realized in this way.


#

The 2,2-disubstituted indolin-3-one moiety is an important structural motif in many natural products and compounds of pharmaceutical interest, such as austamide,[1] brevianamide A,[2] (+)-aristotetelone,[3] isatisine A,[4] hinckdentine A,[5] and others[6] (Figure [1]). Therefore, their synthesis has attracted much attention from synthetic chemists. To date several methodologies have been developed,[7] however, the only successful protocol that proceeds through asymmetric catalysis involves addition reactions to the C–N double bond of 2-substituted 3H-indol-3-ones[7m] [n] [o] [p] [q] [r] or their analogues.[7s] Only one report has appeared for the α-alkylation of 2-substituted indolin-3-ones catalyzed by a chiral catalyst, and the reaction proceeds with moderate enantioselectivity.[7t] Palladium-catalyzed asymmetric allylic alkylation (AAA) is one of the most important reactions for the enantioselective construction of C–C and C–hetero atom bonds in organic synthesis.[8] However, a few examples of α-amino ketones being used in the reaction as prenucleophiles via the enolates derived from ketones and carboxylic acid have been successfully demonstrated.[7t] [9] , [10d] [e] [f] , [i] In the course of our research on palladium-catalyzed AAA during recent years,[10] we have successfully used different types of enolates as nucleophiles.[10d] [e] [f] , [i] In this paper, we would like to report our further studies on the use of 2-substituted indolin-3-ones as prenucleophiles to construct chiral quaternary centers by palladium-catalyzed AAA.[10b] [11]

Zoom Image
Figure 1 Some natural products containing the indolin-3-one substructure with an α-quaternary carbon center

Initially, the reaction of 1-acetyl-2-benzylindolin-3-one (1a) and allyl methyl carbonate (2a) was carried out in the presence of catalytic amounts of [Pd(C3H5)Cl]2 and (R)-BINAP, using LiHMDS as base in tetrahydrofuran (THF) at –40 °C. The reaction afforded the product 2,2-disubstituted indolin-3-one 3a in 83% yield and 38% ee (Table [1], entry 1). Encouraged by this result, the reaction parameters were investigated (Table [1]).

It was found that good yield was achieved, although enantioselectivity was not high, with ligands L2L5 (Figure [2] and Table [1], entries 2–5). The ee value decreased significantly when allyl tert-butyl carbonate (2b) was used (Table [1], entry 6 vs 2). A screen of SIOCPhox ligands developed by our group[10] revealed that the ligand (S,S phos,S)-SIOCPhox L6 afforded better results with respect to both yield and enantioselectivity (entry 7) whereas the other SIOCPhox ligands L7L14 provided inferior results (entries 8–15).

Zoom Image
Figure 2 The structure of ligands L1L14

On the basis of the above results, the effects of solvents and bases using [Pd(C3H5)Cl]2 and (S,S phos,S)-L6 as catalyst was investigated. It can be seen that dimethoxyethane (DME) gave better results (Table [1], entry 17) among various solvents screened, including toluene, DME, Et2O and CH2Cl2 (entries 16–19), whereas LiHMDS was found to be the most suitable base (entry 17). Both yield and ee value decreased significantly when NaHMDS, KHMDS, or LDA was used as base (entries 20–22), and NaH and t-BuONa gave only trace amounts of product (not shown). The use of some common additives, such as LiCl, ZnCl2, and Bn(Et)3NCl, did not improve the yield and/or ee (entries 23–25).

Under the optimized conditions, the substrate scope was then explored; the results are summarized in Table [2]. Generally the reactions proceeded smoothly for all substrates, with yields of 62–99% and ee values of 68–92% being obtained for substrates with benzyl (entry 1), methyl (entry 2), ethyl (entry 9), phenyl (entry 7), o-Br substituted phenyl (entry 8) and benzyl with electron-withdrawing or electron-donating substituent on phenyl group (entries 10–13) at the α-position to the carbonyl. The reaction was also suitable for indolinones with Cl or F at the 6-position (entries 3–6). It should be noted that the reactions of 1g, 1h, 1l, and 1m afforded the corresponding products in lower yields (not shown), however, the yields were improved when the reaction was carried out at 0 or 15 °C. Substrate 1g afforded the product 3g in 86% yield with 92% ee and substrate 1h gave 3h in 92% yield and 87% ee at 15 °C (entries 7 and 8), whereas 1l gave 3l in 93% yield and 84% ee, and 1m provided 3m in 83% yield and 68% ee at 0 °C (entries 12 and 13). Substrate 1n, with a furan-2-ylmethyl substituent, provided 3n in 80% yield and 76% ee (entry 14). It should be pointed out that the product 3h could be used as a key intermediate in the total synthesis of hinckdentine A.[5b] [c]

Table 1 Optimization of Parameters for the Reaction of 1a with 2 a

Entry

L*

Base

Solvent

LG (2)

Yield (%)b

ee (%)c

 1

L1

LiHMDS

THF

OCO2Me (2a)

83

 38

 2

L2

LiHMDS

THF

OCO2Me (2a)

89

 55

 3

L3

LiHMDS

THF

OCO2Me (2a)

95

 40

 4

L4

LiHMDS

THF

OCO2Me (2a)

68

–48d

 5

L5

LiHMDS

THF

OCO2Me (2a)

75

  6

 6

L2

LiHMDS

THF

OCO2 tBu (2b)

90

 21

 7

L6

LiHMDS

THF

OCO2Me (2a)

99

 61

 8

L7

LiHMDS

THF

OCO2Me (2a)

98

 42

 9

L8

LiHMDS

THF

OCO2Me (2a)

97

–44d

10

L9

LiHMDS

THF

OCO2Me (2a)

90

–21d

11

L10

LiHMDS

THF

OCO2Me (2a)

73

 61

12

L11

LiHMDS

THF

OCO2Me (2a)

87

–16d

13

L12

LiHMDS

THF

OCO2Me(2a)

95

  9

14

L13

LiHMDS

THF

OCO2Me (2a)

96

–31d

15

L14

LiHMDS

THF

OCO2Me (2a)

91

 48

16

L6

LiHMDS

toluene

OCO2Me (2a)

51

 42

17

L6

LiHMDS

DME

OCO2Me (2a)

99

 76

18

L6

LiHMDS

Et2O

OCO2Me (2a)

99

 63

19

L6

LiHMDS

CH2Cl2

OCO2Me (2a)

97

 51

20

L6

NaHMDS

DME

OCO2Me (2a)

 7

–16d

21

L6

KHMDS

DME

OCO2Me (2a)

10

  9

22

L6

LDA

DME

OCO2Me(2a)

 6

 37

23e

L6

LiHMDS

DME

OCO2Me (2a)

69

 72

24f

L6

LiHMDS

DME

OCO2Me (2a)

71

 66

25g

L6

LiHMDS

DME

OCO2Me (2a)

76

 54

a Reaction was carried out at –40 °C, molar ratio of 1a/2/[Pd(C3H5)Cl]2/L/base = 100:150:3:6:120.

b Yields of 3a based on 1a.

c Determined by chiral HPLC analysis.

d Reverse sequence of peaks by HPLC.

e LiCl as additive.

f BnN(Et)3Cl as additive.

g ZnCl2 as additive.

The absolute configuration of 3a was determined as R by comparing the sign of the optical rotation of the product with that previously reported.[7t]

In summary, we have realized the palladium-catalyzed asymmetric allylic alkylation of 2-substituted indolin-3-ones with allyl methyl carbonate in good yields and with good enantioselectivities. A chiral quaternary carbon center was also constructed during the reaction. These synthetically useful products could find applications in organic synthesis.[5b] [c] Investigations to extend the scope of the reaction and develop further its application in organic synthesis are in progress.

All the experiments were carried out in flame-dried glassware under a dry argon atmosphere. The solvents were purified and dried over appropriate drying agents and distilled under argon prior to use. 1H, 13C, and 19F NMR spectra were recorded in CDCl3 using TMS as internal standard with Bruker Avance 300 MHz, 400 MHz, or 600 MHz, spectrometers at r.t. HRMS measurements were carried out with a Finnigan MAT 8430 spectrometer.


#

Synthesis of 2,2-Substituted Indolin-3-ones 3; General Procedure

2-Substituted indolin-3-one 1 (0.1 mmol) and DME (1.0 mL) were added into a dry Schlenk tube. LiHMDS (1.0 M in THF, 0.12 mL, 0.12 mmol) was added dropwise and the mixture was stirred for 30 min at –40 °C. In a separate flask, [Pd(C3H5)Cl]2 (1.1 mg, 0.003 mmol) and ligand (S,S phos,S)-SIOCPhox (L6; 4.1 mg, 0.006 mmol) were dissolved in DME (1.0 mL) and the mixture was stirred at r.t. for 30 min, before being added to the above enolate solution at the temperature indicated in Table [2]. Allyl methyl carbonate 2a (0.15 mmol) was then added and the resulting mixture was stirred at the stated temperature. Upon completion (reaction monitored by TLC), the reaction mixture was quenched by sat. aq NH4Cl (5.0 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layer was dried (Na2SO4) and the solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel; petroleum ether–EtOAc, 10:1) to afford the desired product.

Table 2 Substrate Scope for Palladium-Catalyzed AAAa

Entry

Substrate

Product

Yield (%)b

ee (%)c

1

1a

3a

99

75

2

1b

3b

62

88

3

1c

3c

80

74

4

1d

3d

70

86

5

1e

3e

76

86

6

1f

3f

66

86

7d

1g

3g

86

92

 8d

1h

3h

92

87

 9

1i

3i

60

78

10

1j

3j

83

84

11

1k

3k

81

75

12e

1l

3l

93

84

13e

1m

3m

83

68

14

1n

3n

80

76

a Reaction was carried out at –40 °C, molar ratio of 1/2a/[Pd(C3H5)Cl]2/L6/base = 100:150:3:6:120.

b Yield of 3 based on 1.

c Determined by chiral HPLC analysis.

d Reaction was carried out at 15 °C.

e Reaction was carried out at 0 °C.


#

1-Acetyl-2-allyl-2-benzylindolin-3-one (3a)

Yield: 30.2 mg (99%); pale-yellow solid; mp 72–75 °C; [α]D 24 +10.0 (c 1.0, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (5:95); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 18.8 (minor), 15.4 (major) min; ee = 75%.

IR (KBr): 3028, 2962, 2921, 2851, 1711, 1667, 1604, 1469, 1433, 1371, 1308, 1031, 751, 703 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.60 (d, J = 7.2 Hz, 1 H), 7.39 (t, J = 7.2 Hz, 1 H), 7.12 (d, J = 5.6 Hz, 1 H), 6.99–6.93 (m, 6 H), 5.36–5.25 (m, 1 H), 5.04 (d, J = 16.8 Hz, 1 H), 4.83 (d, J = 9.6 Hz, 1 H), 3.74 (d, J = 12.4 Hz, 1 H), 3.36 (br, 1 H), 3.22 (d, J = 13.2 Hz, 1 H), 2.82 (br, 1 H), 2.44 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 202.0, 168.6, 152.5, 136.7, 135.1, 131.2, 129.4, 127.8, 126.7, 125.3, 124.1, 123.2, 119.4, 114.7, 77.0, 41.6, 40.4, 27.1.

MS (EI): m/z (%) = 305 (39) [M]+, 264 (21), 222 (61), 214 (17), 172 (100), 144 (10), 130 (10), 115 (12), 91 (50), 77 (13), 43 (30).

HRMS (ESI): m/z [M + H]+ calcd for C20H20NO2: 306.1489; found: 306.1495.


#

1-Acetyl-2-allyl-2-methylindolin-3-one (3b)

Yield: 14.2 mg (62%); pale-yellow solid; mp 90–91 °C; [α]D 27 +52.9 (c 1.00, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (2:98); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 18.7 (minor), 21.1 (major) min; ee = 88%.

IR (KBr): 3072, 1703, 1667, 1641, 1608, 1471, 1432, 1371, 1343, 1310, 1191, 1100, 930, 750 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.32 (br, 1 H), 7.78 (d, J = 7.6 Hz, 1 H), 7.65 (dt, J = 7.8, 1.2 Hz, 1 H), 7.20 (t, J = 7.6 Hz, 1 H), 5.33–5.23 (m, 1 H), 5.02 (d, J = 16.8 Hz, 1 H), 4.86 (d, J = 9.6 Hz, 1 H), 3.10 (br, 1 H), 2.76 (br, 1 H), 2.51 (s, 3 H), 1.60 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 201.8, 168.7, 152.8, 137.4, 131.1, 124.7, 123.9, 119.5, 117.1, 116.1, 72.0, 40.9, 26.7, 22.8.

MS (EI): m/z (%) = 229 (14) [M]+, 188 (37), 147 (15), 146 (100), 144 (9), 117 (10), 91 (10), 77 (15).

HRMS (ESI): m/z [M + H]+ calcd for C14H16NO2: 230.1176; found: 230.1182.


#

1-Acetyl-2-allyl-2-benzyl-6-chloroindolin-3-one (3c)

Yield: 27.1 mg (80%); pale-yellow solid; mp 50–52 °C; [α]D 24 +43.2 (c 1.04, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (5:95); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 11.7 (minor), 11.0 (major) min; ee = 74%.

IR (KBr): 3083, 2956, 2925, 2854, 1716, 1673, 1603, 1574, 1428, 1370, 1312, 1272, 1083, 992, 702 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.52 (d, J = 7.2 Hz, 1 H), 7.13 (s, 1 H), 7.00–6.92 (m, 6 H), 5.34–5.24 (m, 1 H), 5.05 (d, J = 17.2 Hz, 1 H), 4.87 (d, J = 9.2 Hz, 1 H), 3.72 (br, 1 H), 3.34–3.22 (m, 2 H), 2.81 (br, 1 H), 2.44 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 200.6, 168.5, 153.0, 143.3, 134.9, 130.9, 129.4, 128.1, 127.0, 125.0, 123.9, 119.8, 115.1, 77.8, 41.6, 40.5, 27.1.

MS (EI): m/z (%) = 341 (39) [M]+, 339 (95) [M]+, 298 (45), 258 (67), 256 (100), 208 (97), 207 (97), 206 (100), 164 (26), 143 (33), 115 (29), 91 (96).

HRMS (ESI): m/z [M + H]+ calcd for C20H19ClNO2: 340.1099; found: 340.1098.


#

1-Acetyl-2-allyl-6-chloro-2-methylindolin-3-one (3d)

Yield: 18.4 mg (70%); slightly yellow oil; [α]D 20 +51.3 (c 1.05, CHCl); HPLC [Chiralpak AD-H; i-PrOH–hexane (3:97); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 12.8 (minor), 13.5 (major) min; ee = 86%.

IR (KBr): 3080, 2979, 2928, 2855, 1717, 1672, 1602, 1574, 1425, 1368, 1341, 1269, 1183, 979, 925, 826 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.05 (br, 1 H), 7.66 (d, J = 8.4 Hz, 1 H), 7.15 (dd, J = 8.0, 1.2 Hz, 1 H), 5.29–5.18 (m, 1 H), 5.00 (d, J = 16.8 Hz, 1 H), 4.86 (d, J = 10.4 Hz, 1 H), 3.00 (br, 1 H), 2.73 (br, 1 H), 2.47 (s, 3 H), 1.56 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 200.1, 168.7, 153.1, 143.8, 130.6, 125.2, 124.6, 121.8, 119.8, 117.8, 71.8, 41.1, 26.1, 22.9.

MS (EI): m/z (%) = 265 (6) [M]+, 263 (20) [M]+, 224 (11), 222 (38), 182 (34), 180 (100), 117 (11), 110 (14), 75 (20), 43 (55).

HRMS (ESI): m/z [M + H]+ calcd for C14H15ClNO2: 264.0786; found: 264.0780.


#

1-Acetyl-2-allyl-2-benzyl-6-fluoroindolin-3-one (3e)

Yield: 24.5 mg (76%); pale-solid; mp 81–83 °C; [α]D 20 +17.2 (c 1.12, CHCl3); HPLC [Chiralpak AD; i-PrOH–hexane (5:95); flow rate: 0.6 mL/min; λ = 214 nm]: tR = 15.0 (minor), 13.9 (major) min; ee = 86%.

IR (KBr): 3084, 3032, 2931, 1716, 1677, 1619, 1589, 1488, 1436, 1372, 1275, 1184, 924, 703 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.62 (t, J = 4.8 Hz, 1 H), 7.03–7.00 (m, 3 H), 6.94–6.92 (m, 2 H), 6.81 (br, 1 H), 6.72 (dt, J = 8.1, 2.0 Hz, 1 H), 5.37–5.26 (m, 1 H), 5.07 (d, J = 17.2 Hz, 1 H), 4.89 (d, J = 8.8 Hz, 1 H), 3.73 (br, 1 H), 3.36–3.23 (m, 2 H), 2.83 (br, 1 H), 2.44 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 200.2, 168.5, 168.2 (d, J C–F = 255.0 Hz), 153.9, 134.9, 131.0, 129.4, 128.0, 126.9, 126.3, 121.9, 119.7, 111.4 (d, J C–F = 22.6 Hz), 102.6 (d, J C–F = 27.1 Hz), 77.9, 41.6, 40.4, 27.0.

19F NMR (376 MHz, CDCl3): δ = –97.44.

MS (EI): m/z (%) = 323 (55) [M]+, 282 (20), 240 (95), 232 (30), 191 (28), 190 (100), 162 (19), 148 (17), 91 (62).

HRMS (ESI): m/z [M + H]+ calcd for C20H19FNO2: 324.1394; found: 324.1381.


#

1-Acetyl-2-allyl-6-fluoro-2-methylindolin-3-one (3f)

Yield: 16.3 mg (66%); slightly yellow oil; [α]D 20.7 +63.0 (c 1.00, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (3:97); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 13.6 (minor), 14.7 (major) min; ee = 86%.

IR (KBr): 3082, 2980, 2931, 2856, 1717, 1673, 1618, 1589, 1437, 1370, 1345, 1267, 1192, 987, 924, 843 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.86 (br, 1 H), 7.73 (dd, J = 8.0, 6.4 Hz, 1 H), 6.87 (t, J = 8.4 Hz, 1 H), 5.29–5.18 (m, 1 H), 4.99 (d, J = 16.8 Hz, 1 H), 4.85 (d, J = 10.0 Hz, 1 H), 2.99 (br, 1 H), 2.74 (br, 1 H), 2.45 (s, 3 H), 1.56 (s, 3 H).

13C NMR (75 MHz, CDCl3): δ = 199.6, 170.3, 168.6, 166.9, 154.0, 130.5, 126.3, 119.6, 112.0 (d, J C–F = 23.9 Hz), 105.1, 72.1, 41.0, 25.9, 22.8.

19F NMR (376 MHz, CDCl3): δ = –97.04.

MS (EI): m/z (%) = 247 (41) [M]+, 206 (89), 165 (44), 164 (100), 162 (21), 135 (24), 109 (22), 95 (25), 94 (36).

HRMS (ESI): m/z [M + H]+ calcd for C14H15FNO2: 248.1081; found: 248.1072.


#

1-Acetyl-2-allyl-2-phenylindolin-3-one (3g)

Yield: 25.0 mg (86%); pale solid; mp 121–123 °C; [α]D 25.5 +338.9 (c 0.70, CHCl3); HPLC [Chiralpak AD; i-PrOH–hexane (5:95); flow rate: 0.6 mL/min; λ = 214 nm]: tR = 23.2 (minor), 22.0 (major) min; ee = 92%.

IR (KBr): 3067, 2919, 2852, 1721, 1670, 1606, 1460, 1370, 1337, 1292, 1149, 914, 756, 701 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.81 (d, J = 8.0 Hz, 1 H), 7.76–7.72 (m, 2 H), 7.38–7.32 (m, 3 H), 7.28–7.24 (m, 3 H), 5.46–5.36 (m, 1 H), 5.19 (d, J = 16.8 Hz, 1 H), 5.02 (d, J = 10.0 Hz, 1 H), 3.66 (dd, J = 13.2, 4.8 Hz, 1 H), 3.15 (dd, J = 13.2, 8.0 Hz, 1 H), 2.00 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 197.7, 170.1, 154.6, 137.8, 137.6, 129.6, 129.5, 128.5, 125.1, 124.8, 124.7, 122.3, 120.6, 118.9, 74.7, 40.2, 25.1.

MS (EI): m/z (%) = 291 (64) [M]+, 250 (96), 220 (21), 209 (91), 208 (100), 180 (31), 152 (27), 77 (42).

HRMS (ESI): m/z [M + H]+ calcd for C19H18NO2: 292.1332; found: 292.1334.


#

1-Acetyl-2-allyl-2-(2-bromophenyl)indolin-3-one (3h)

Yield: 33.9 mg (92%); pale-yellow solid; mp 120–122 °C; [α]D 25.5 +157.4 (c 1.09, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (20:80); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 14.9 (minor), 19.8 (major) min; ee = 87%.

IR (KBr): 3077, 2923, 2850, 1718, 1668, 1607, 1588, 1460, 1369, 1339, 1291, 1197, 1004, 911, 750 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.62 (br, 1 H), 7.76 (m, 3 H), 7.50 (d, J = 7.5 Hz, 1 H), 7.41 (t, J = 7.5 Hz, 1 H), 7.23–7.15 (m, 2 H), 5.41–5.25 (m, 1 H), 5.08 (d, J = 15.9 Hz, 1 H), 4.88 (d, J = 10.2 Hz, 1 H), 3.37 (br, 1 H), 3.23 (br, 1 H), 1.95 (br, 3 H).

13C NMR (75 MHz, CDCl3): δ = 198.3, 168.5, 154.3, 137.2, 135.2, 130.5, 130.0, 129.6, 127.8, 125.7, 124.2, 123.3, 121.6, 120.8, 119.0, 74.4, 41.8, 25.1.

MS (EI): m/z (%) = 371 (5) [M]+, 369 (6) [M]+, 330 (17), 328 (23), 290 (53), 288 (93), 286 (95), 207 (100), 178 (18), 151 (18), 102 (18), 76 (36).

HRMS (ESI): m/z [M + H]+ calcd for C19H17BrNO2: 370.0437; found: 370.0437.


#

1-Acetyl-2-allyl-2-ethylindolin-3-one (3i)

Yield: 14.6 mg (60%); slightly yellow oil; [α]D 24.5 +6.3 (c 1.00, CHCl3); HPLC [Chiralpak AD; i-PrOH–hexane (5:95); flow rate: 0.6 mL/min; λ = 214 nm]: tR = 13.6 (minor), 14.1 (major) min; ee = 78%.

IR (KBr): 3079, 2971, 2934, 2878, 1714, 1667, 1609, 1460, 1370, 1295, 920, 754 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.67 (br, 1 H), 7.76 (d, J = 8.0 Hz, 1 H), 7.65 (td, J = 8.0, 1.2 Hz, 1 H), 7.19 (t, J = 7.6 Hz, 1 H), 5.33–5.23 (m, 1 H), 5.01 (d, J = 16.8 Hz, 1 H), 4.85 (d, J = 10.0 Hz, 1 H), 3.14 (br, 1 H), 2.72–2.52 (m, 5 H), 2.04 (br, 1 H), 0.56 (t, J = 7.6 Hz, 3 H).

13C NMR (150 MHz, CDCl3): δ = 202.2, 168.3, 152.9, 137.2, 131.2, 125.1, 124.1, 123.6, 119.3, 115.2, 74.4, 40.6, 29.6, 26.9, 7.8.

MS (EI): m/z (%) = 243 (20) [M]+, 202 (50), 161 (18), 160 (100), 132 (26), 130 (19), 117 (15), 77 (18).

HRMS (ESI): m/z [M + H]+ calcd for C15H18NO2: 244.1332; found: 244.1333.


#

1-Acetyl-2-allyl-2-(2-bromobenzyl)indolin-3-one (3j)

Yield: 31.8 mg (83%); pale-yellow solid; mp 55–57 °C; [α]D 24.5 –20.2 (c 1.00, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (5:95); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 22.0 (minor), 17.3 (major) min; ee = 84%.

IR (KBr): 3077, 2929, 1715, 1668, 1608, 1470, 1435, 1369, 1298, 1024, 926, 751 cm–1.

1H NMR (300 MHz, CDCl3): δ = 8.50 (br, 1 H), 7.61 (d, J = 7.5 Hz, 1 H), 7.49 (t, J = 7.8 Hz, 1 H), 7.30 (d, J = 8.1 Hz, 1 H), 7.06–6.96 (m, 3 H), 6.86 (t, J = 8.1 Hz, 1 H), 5.37–5.24 (m, 1 H), 5.08 (d, J = 16.2 Hz, 1 H), 4.89 (d, J = 9.9 Hz, 1 H), 3.85 (br, 1 H), 3.52 (br, 1 H), 3.43 (d, J = 14.1 Hz, 1 H), 2.91 (br, 1 H), 2.50 (s, 3 H).

13C NMR (150 MHz, CDCl3): δ = 200.6, 168.5, 152.2, 136.6, 135.0, 132.8, 132.1, 131.2, 128.3, 126.7, 125.2, 125.0, 124.3, 123.3, 119.6, 115.0, 76.3, 40.7, 39.9, 27.0.

MS (EI): m/z (%) = 385 (36) [M]+, 383 (37) [M]+, 344 (24), 342 (27), 302 (69), 300 (72), 220 (52), 214 (98), 173 (84), 172 (100), 144 (33), 130 (28), 115 (25), 90 (25).

HRMS (ESI): m/z [M + H]+ calcd for C20H19BrNO2: 384.0594; found: 384.0593.


#

1-Acetyl-2-allyl-2-(4-isopropylbenzyl)indolin-3-one (3k)

Yield: 28.1 mg (81%); slightly yellow oil; [α]D 24.6 +6.4 (c 0.92, CHCl3­); HPLC [Chiralpak AD-H; i-PrOH–hexane (5:95); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 15.4 (minor), 12.5 (major) min; ee = 75%.

IR (KBr): 3080, 2960, 2927, 2871, 1716, 1670, 1609, 1470, 1372, 1311, 1290, 924, 795 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 7.6 Hz, 1 H), 7.41 (t, J = 8.0 Hz, 1 H), 7.13 (d, J = 6.4 Hz, 1 H), 7.00 (t, J = 7.6 Hz, 1 H), 6.86–6.81 (m, 4 H), 5.38–5.27 (m, 1 H), 5.06 (d, J = 17.2 Hz, 1 H), 4.86 (d, J = 10.0 Hz, 1 H), 3.72 (d, J = 12.4 Hz, 1 H), 3.40–3.33 (m, 1 H), 3.20 (d, J = 13.2 Hz, 1 H), 2.85–2.80 (m, 1 H), 2.69–2.61 (m, 1 H), 2.46 (s, 3 H), 1.05 (d, J = 2.4 Hz, 3 H), 1.03 (d, J = 2.4 Hz, 3 H).

13C NMR (75 MHz, CDCl3): δ = 202.2, 168.7, 152.6, 147.3, 136.6, 132.4, 131.4, 129.4, 125.8, 125.5, 124.3, 123.1, 119.4, 114.9, 74.3, 41.3, 40.3, 33.6, 27.2, 23.9.

MS (EI): m/z (%) = 347 (15) [M]+, 264 (21), 214 (12), 172 (100), 133 (38), 117 (18), 105 (11), 91 (11).

HRMS (ESI): m/z [M + H]+ calcd for C23H26NO2: 348.1958; found: 348.1959.


#

2-[(1-Acetyl-2-allyl-3-oxoindolin-2-yl)methyl]benzonitrile (3l)

Yield: 30.7 mg (93%); pale-solid; mp 83–85 °C; [α]D 24.7 –14.3 (c 1.35, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (8:92); flow rate: 1.0 mL/min; λ = 214 nm]: tR = 22.9 (minor), 20.6 (major) min; ee = 84%.

IR (KBr): 3080, 3025, 2937, 2854, 2225, 1707, 1674, 1608, 1470, 1368, 1272, 933, 910, 753 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 8.0 Hz, 1 H), 7.53 (t, J = 8.0 Hz, 1 H), 7.41 (d, J = 7.2 Hz, 1 H), 7.35 (br, 1 H), 7.28 (t, J = 7.6 Hz, 1 H), 7.14 (t, J = 7.2 Hz, 2 H), 7.05 (t, J = 7.2 Hz, 1 H), 5.36–5.26 (m, 1 H), 5.10 (d, J = 17.2 Hz, 1 H), 4.91 (d, J = 9.6 Hz, 1 H), 3.98 (d, J = 10.8 Hz, 1 H), 3.52–3.43 (m, 2 H), 2.90 (br, 1 H), 2.56 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 200.4, 168.8, 152.5, 138.9, 137.1, 133.1, 132.1, 131.4, 130.9, 127.5, 124.8, 124.5, 123.5, 120.1, 118.1, 115.2, 113.5, 76.1, 40.0, 39.7, 27.1.

MS (EI): m/z (%) = 330 (13) [M]+, 288 (6), 248 (18), 247 (100), 214 (20), 172 (67), 144 (7), 130 (7), 116 (19), 89 (16).

HRMS (ESI): m/z [M + H]+ calcd for C21H19N2O2: 331.1441; found: 331.1445.


#

1-Acetyl-2-allyl-2-(3-methylbenzyl)indolin-3-one (3m)

Yield: 26.5 mg (83%); pale-solid; mp 62–64 °C; [α]D 24.6 +8.2 (c 1.10, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (5:95); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 15.5 (minor), 12.9 (major) min; ee = 68%.

IR (KBr): 3079, 3024, 2961, 2924, 1715, 1670, 1609, 1471, 1436, 1372, 1300, 804, 781, 702 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.63 (d, J = 7.2 Hz, 1 H), 7.43 (t, J = 8.0 Hz, 1 H), 7.14 (d, J = 8.0 Hz, 1 H), 7.02 (t, J = 7.2 Hz, 1 H), 6.87 (t, J = 7.2 Hz, 1 H), 6.78–6.73 (m, 3 H), 5.37–5.27 (m, 1 H), 5.06 (d, J = 17.2 Hz, 1 H), 4.85 (d, J = 9.6 Hz, 1 H), 3.71 (d, J = 12.8 Hz, 1 H), 3.38 (dd, J = 12.0, 8.0 Hz, 1 H), 3.20 (d, J = 13.2 Hz, 1 H), 3.82 (dd, J = 11.6, 8.0 Hz, 1 H), 2.45 (s, 3 H), 2.09 (s, 3 H).

13C NMR (150 MHz, acetone-d 6): δ = 201.9, 169.5, 153.6, 138.0, 137.7, 136.1, 132.4, 130.9, 128.5, 128.1, 127.3, 126.1, 124.2, 123.9, 119.4, 116.2, 77.2, 42.0, 41.2, 27.3, 21.2.

MS (EI): m/z (%) = 319 (35) [M]+, 278 (13), 236 (68), 214 (15), 172 (100), 115 (12), 105 (34), 77 (22).

HRMS (ESI): m/z [M + H]+ calcd for C21H22NO2: 320.1645; found: 320.1637.


#

1-Acetyl-2-allyl-2-(furan-2-ylmethyl)indolin-3-one (3n)

Yield: 23.6 mg (80%); slightly yellow oil; [α]D 24.6 +10.1 (c 1.00, CHCl3); HPLC [Chiralpak AD-H; i-PrOH–hexane (5:95); flow rate: 0.7 mL/min; λ = 214 nm]: tR = 25.0 (minor), 20.5 (major) min; ee = 76%.

IR (KBr): 3080, 2982, 2853, 1716, 1668, 1607, 1504, 1435, 1371, 1292, 973, 922, 750 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 7.6 Hz, 1 H), 7.52 (t, J = 8.0 Hz, 1 H), 7.27 (br, 1 H), 7.09 (t, J = 7.2 Hz, 1 H), 6.95 (s, 1 H), 5.98 (s, 1 H), 5.85 (s, 1 H), 5.36–5.26 (m, 1 H), 5.05 (d, J = 17.2 Hz, 1 H), 4.86 (d, J = 10.0 Hz, 1 H), 3.85 (d, J = 9.2 Hz, 1 H), 3.28 (br, 2 H), 2.77 (br, 1 H), 2.48 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 201.4, 168.6, 150.2, 141.6, 136.8, 131.0, 124.9, 124.5, 123.3, 119.6, 114.9, 110.0, 107.9, 75.4, 40.1, 34.3, 27.0.

MS (EI): m/z (%) = 295 (20) [M]+, 253 (21), 214 (71), 173 (32), 172 (100), 154 (17), 144 (30), 130 (29), 81 (52).

HRMS (ESI): m/z [M + H]+ calcd for C18H18NO3: 296.1281; found: 296.1275.


#
#

Acknowledgment

This research was financially supported by the Major Basic Re­search Development Program (Grant No. G 2010CB833300), National Natural Science Foundation of China (21121062, 21032007, 21302205), Chinese Academy of Sciences, Technology Commission of Shanghai Municipality, and the Croucher Foundation of Hong Kong. We thank Dr. Bai-Lin Lei for inspiring discussions.

Supporting Information

  • References

    • 1a Steyn PS. Tetrahedron Lett. 1971; 3331
    • 1b Steyn PS. Tetrahedron 1973; 29: 107
    • 1c Hutchison AJ, Kishi Y. J. Am. Chem. Soc. 1979; 101: 6786
    • 2a Birch AJ, Wright JJ. J. Chem. Soc., Chem. Commun. 1969; 644
    • 2b Birch AJ, Wright JJ. Tetrahedron 1970; 26: 2329
    • 2c Birch AJ, Russell RA. Tetrahedron 1972; 28: 2999
    • 2d Williams RM, Glinka T, Kwast E, Coffman H, Stille JK. J. Am. Chem. Soc. 1990; 112: 808
    • 3a Bhakuni DS, Silva M, Matlin SA, Sammes PG. Phytochemistry 1976; 15: 574
    • 3b Stoermer D, Heathcock CH. J. Org. Chem. 1993; 58: 564
    • 4a Liu J.-F, Jiang Z.-Y, Wang R.-R, Zeng Y.-T, Chen J.-J, Zhang X.-M, Ma Y.-B. Org. Lett. 2007; 9: 4127
    • 4b Karadeolian A, Kerr MA. Angew. Chem. Int. Ed. 2010; 49: 1133
    • 4c Karadeolian A, Kerr MA. J. Org. Chem. 2010; 75: 6830
    • 4d Lee J, Panek JS. Org. Lett. 2011; 13: 502
    • 4e Zhang X, Mu T, Zhan FX, Ma LJ, Liang GX. Angew. Chem. Int. Ed. 2011; 50: 6164
    • 5a Blackman AJ, Hambly TW, Picker K, Taylor WC, Thirasasana N. Tetrahedron Lett. 1987; 28: 5561
    • 5b Liu Y, McWhorter WW. J. Am. Chem. Soc. 2003; 125: 4240
    • 5c Higuchi K, Sato Y, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Org. Lett. 2009; 11: 197
    • 6a Takahashi I, Takahashi K, Ichimura M, Morimoto M, Asano K, Kawamoto I, Tomita F, Nakano H. J. Antibiot. 1988; 41: 1915
    • 6b Fukuda Y, Nakatani K, Ito Y, Terashima S. Tetrahedron Lett. 1990; 31: 6699

      For racemic versions, see selected examples:
    • 7a Lednicer D, Emmert DE. J. Heterocycl. Chem. 1970; 7: 575
    • 7b Zhang X, Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
    • 7c Tommasi G, Bruni P, Greci L, Sgarabotto P, Righi L. J. Chem. Soc., Perkin Trans. 1 1999; 681
    • 7d Liu Y, McWhorter WW. Jr. J. Org. Chem. 2003; 68: 2618
    • 7e Boger DL, Nishi T. Bioorg. J. Med. Chem. 1995; 3: 67
    • 7f Yun S, Kim K. J. Chem. Soc., Perkin Trans. 1 2002; 2360
    • 7g Buller MJ, Cook TG, Kobayashi Y. Heterocycles 2007; 72: 163
    • 7h Gowan M, Caille AS, Lau CK. Synlett 1997; 1312
    • 7i Merour J.-Y, Chichereau L, Desarbre E, Gadonneix P. Synthesis 1996; 519
    • 7j Kamel AA, Abdou WM. Synlett 2007; 1269
    • 7k Yamada K, Kur-okawa T, Tokuyama H, Fukuyama T. J. Am. Chem. Soc. 2003; 125: 6630
    • 7l Astolfi P, Bruni P, Greci L, Stipa P, Righi L, Rizzoli C. Eur. J. Org. Chem. 2003; 2626

    • For asymmetric and catalytic versions, see:
    • 7m Li L, Han M, Xiao M, Xie Z. Synlett 2011; 1727
    • 7n Rueping M, Raja S, Nuñez A. Adv. Synth. Catal. 2011; 353: 563
    • 7o Parra A, Alfaro R, Marzo L, Moreno-Carrasco A, Garcia Ruano JL, Aleman J. Chem. Commun. 2012; 48: 9759
    • 7p Rueping M, Rasappan R, Raja S. Helv. Chim. Acta 2012; 95: 2296
    • 7q Liu J.-X, Zhou Q.-Q, Deng J.-G, Chen Y.-C. Org. Biomol. Chem. 2013; 11: 8175
    • 7r Rueping M, Raja S. Beilstein J. Org. Chem. 2012; 8: 1819
    • 7s Yin Q, You S.-L. Chem. Sci. 2011; 3: 1344
    • 7t Higuchi K, Masuda K, Koseki T, Hatori M, Sakamoto M, Kawasaki T. Heterocycles 2007; 73: 641

      For reviews, see:
    • 8a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 8b Pfaltz A, Lautens M In Comprehensive Asymmetric Catalysis . Vol. 2. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York: 1999: 833
    • 8c Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 8d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 8e Ding C.-H, Hou X.-L. Top. Organomet. Chem. 2011; 36: 247
    • 9a Genet JP, Ferroud D, Juge S, Monte JR. Tetrahedron Lett. 1986; 27: 4573
    • 9b Nakoji M, Kanayama T, Okino T, Takemoto Y. Org. Lett. 2001; 3: 3329
    • 9c Kuwano R, Ito Y. J. Am. Chem. Soc. 1999; 121: 3236
    • 9d Kuwano R, Nishio R, Ito Y. Org. Lett. 1999; 1: 837
    • 9e Wang Y. Ph.D. Dissertation. Shanghai Institute of Organic Chemistry; P. R. of China: 2002
    • 9f Maity P, König B. Synthesis 2006; 2719
    • 9g Nemoto T, Harada T, Matsumoto T, Hamada Y. Tetrahedron Lett. 2007; 48: 6304
    • 9h Malinowski JT, McCarver SJ, Johnson JS. Org. Lett. 2012; 14: 2878
    • 9i Ogasawara M, Ngo HL, Sakamoto T, Takahashi T, Lin W. Org. Lett. 2005; 7: 2881
    • 10a You S.-L, Zhu X.-Z, Luo Y.-M, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2001; 123: 7471
    • 10b Sun N, Hou X.-L. Org. Lett. 2004; 6: 4399
    • 10c Zheng W.-H, Sun N, Hou X.-L. Org. Lett. 2005; 7: 5151
    • 10d Zheng W.-H, Zheng B.-H, Zhang Y, Hou X.-L. J. Am. Chem. Soc. 2007; 129: 7718
    • 10e Zhang K, Peng Q, Hou X.-L, Wu Y.-D. Angew. Chem. Int. Ed. 2008; 47: 1741
    • 10f Chen J.-P, Ding C.-H, Liu W, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2010; 132: 15493
    • 10g Zheng B.-H, Ding C.-H, Hou X.-L. Synlett 2011; 2262
    • 10h Yang X.-F, Ding C.-H, Li X.-H, Huang J.-Q, Hou X.-L, Dai L.-X, Wang P.-J. J. Org. Chem. 2012; 77: 8980
    • 10i Li X.-H, Zheng B.-H, Ding C.-H, Hou X.-L. Org. Lett. 2013; 15: 6086

      Reviews:
    • 11a Fuji K. Chem. Rev. 1993; 93: 2037
    • 11b Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
    • 11c O’Brien P. J. Chem. Soc., Perkin Trans. 1 2001; 95
    • 11d Christoffers J, Mann A. Angew. Chem. Int. Ed. 2001; 40: 4591
    • 11e Christoffers J, Baro A. Adv. Synth. Catal. 2005; 347: 1473
    • 11f Trost BM, Jiang C. Synthesis 2006; 369
    • 11g Bella M, Casperi T. Synthesis 2009; 1583
    • 11h Hong AY, Stoltz BM. Eur. J. Org. Chem. 2013; 2745

  • References

    • 1a Steyn PS. Tetrahedron Lett. 1971; 3331
    • 1b Steyn PS. Tetrahedron 1973; 29: 107
    • 1c Hutchison AJ, Kishi Y. J. Am. Chem. Soc. 1979; 101: 6786
    • 2a Birch AJ, Wright JJ. J. Chem. Soc., Chem. Commun. 1969; 644
    • 2b Birch AJ, Wright JJ. Tetrahedron 1970; 26: 2329
    • 2c Birch AJ, Russell RA. Tetrahedron 1972; 28: 2999
    • 2d Williams RM, Glinka T, Kwast E, Coffman H, Stille JK. J. Am. Chem. Soc. 1990; 112: 808
    • 3a Bhakuni DS, Silva M, Matlin SA, Sammes PG. Phytochemistry 1976; 15: 574
    • 3b Stoermer D, Heathcock CH. J. Org. Chem. 1993; 58: 564
    • 4a Liu J.-F, Jiang Z.-Y, Wang R.-R, Zeng Y.-T, Chen J.-J, Zhang X.-M, Ma Y.-B. Org. Lett. 2007; 9: 4127
    • 4b Karadeolian A, Kerr MA. Angew. Chem. Int. Ed. 2010; 49: 1133
    • 4c Karadeolian A, Kerr MA. J. Org. Chem. 2010; 75: 6830
    • 4d Lee J, Panek JS. Org. Lett. 2011; 13: 502
    • 4e Zhang X, Mu T, Zhan FX, Ma LJ, Liang GX. Angew. Chem. Int. Ed. 2011; 50: 6164
    • 5a Blackman AJ, Hambly TW, Picker K, Taylor WC, Thirasasana N. Tetrahedron Lett. 1987; 28: 5561
    • 5b Liu Y, McWhorter WW. J. Am. Chem. Soc. 2003; 125: 4240
    • 5c Higuchi K, Sato Y, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Org. Lett. 2009; 11: 197
    • 6a Takahashi I, Takahashi K, Ichimura M, Morimoto M, Asano K, Kawamoto I, Tomita F, Nakano H. J. Antibiot. 1988; 41: 1915
    • 6b Fukuda Y, Nakatani K, Ito Y, Terashima S. Tetrahedron Lett. 1990; 31: 6699

      For racemic versions, see selected examples:
    • 7a Lednicer D, Emmert DE. J. Heterocycl. Chem. 1970; 7: 575
    • 7b Zhang X, Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
    • 7c Tommasi G, Bruni P, Greci L, Sgarabotto P, Righi L. J. Chem. Soc., Perkin Trans. 1 1999; 681
    • 7d Liu Y, McWhorter WW. Jr. J. Org. Chem. 2003; 68: 2618
    • 7e Boger DL, Nishi T. Bioorg. J. Med. Chem. 1995; 3: 67
    • 7f Yun S, Kim K. J. Chem. Soc., Perkin Trans. 1 2002; 2360
    • 7g Buller MJ, Cook TG, Kobayashi Y. Heterocycles 2007; 72: 163
    • 7h Gowan M, Caille AS, Lau CK. Synlett 1997; 1312
    • 7i Merour J.-Y, Chichereau L, Desarbre E, Gadonneix P. Synthesis 1996; 519
    • 7j Kamel AA, Abdou WM. Synlett 2007; 1269
    • 7k Yamada K, Kur-okawa T, Tokuyama H, Fukuyama T. J. Am. Chem. Soc. 2003; 125: 6630
    • 7l Astolfi P, Bruni P, Greci L, Stipa P, Righi L, Rizzoli C. Eur. J. Org. Chem. 2003; 2626

    • For asymmetric and catalytic versions, see:
    • 7m Li L, Han M, Xiao M, Xie Z. Synlett 2011; 1727
    • 7n Rueping M, Raja S, Nuñez A. Adv. Synth. Catal. 2011; 353: 563
    • 7o Parra A, Alfaro R, Marzo L, Moreno-Carrasco A, Garcia Ruano JL, Aleman J. Chem. Commun. 2012; 48: 9759
    • 7p Rueping M, Rasappan R, Raja S. Helv. Chim. Acta 2012; 95: 2296
    • 7q Liu J.-X, Zhou Q.-Q, Deng J.-G, Chen Y.-C. Org. Biomol. Chem. 2013; 11: 8175
    • 7r Rueping M, Raja S. Beilstein J. Org. Chem. 2012; 8: 1819
    • 7s Yin Q, You S.-L. Chem. Sci. 2011; 3: 1344
    • 7t Higuchi K, Masuda K, Koseki T, Hatori M, Sakamoto M, Kawasaki T. Heterocycles 2007; 73: 641

      For reviews, see:
    • 8a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 8b Pfaltz A, Lautens M In Comprehensive Asymmetric Catalysis . Vol. 2. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York: 1999: 833
    • 8c Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 8d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 8e Ding C.-H, Hou X.-L. Top. Organomet. Chem. 2011; 36: 247
    • 9a Genet JP, Ferroud D, Juge S, Monte JR. Tetrahedron Lett. 1986; 27: 4573
    • 9b Nakoji M, Kanayama T, Okino T, Takemoto Y. Org. Lett. 2001; 3: 3329
    • 9c Kuwano R, Ito Y. J. Am. Chem. Soc. 1999; 121: 3236
    • 9d Kuwano R, Nishio R, Ito Y. Org. Lett. 1999; 1: 837
    • 9e Wang Y. Ph.D. Dissertation. Shanghai Institute of Organic Chemistry; P. R. of China: 2002
    • 9f Maity P, König B. Synthesis 2006; 2719
    • 9g Nemoto T, Harada T, Matsumoto T, Hamada Y. Tetrahedron Lett. 2007; 48: 6304
    • 9h Malinowski JT, McCarver SJ, Johnson JS. Org. Lett. 2012; 14: 2878
    • 9i Ogasawara M, Ngo HL, Sakamoto T, Takahashi T, Lin W. Org. Lett. 2005; 7: 2881
    • 10a You S.-L, Zhu X.-Z, Luo Y.-M, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2001; 123: 7471
    • 10b Sun N, Hou X.-L. Org. Lett. 2004; 6: 4399
    • 10c Zheng W.-H, Sun N, Hou X.-L. Org. Lett. 2005; 7: 5151
    • 10d Zheng W.-H, Zheng B.-H, Zhang Y, Hou X.-L. J. Am. Chem. Soc. 2007; 129: 7718
    • 10e Zhang K, Peng Q, Hou X.-L, Wu Y.-D. Angew. Chem. Int. Ed. 2008; 47: 1741
    • 10f Chen J.-P, Ding C.-H, Liu W, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2010; 132: 15493
    • 10g Zheng B.-H, Ding C.-H, Hou X.-L. Synlett 2011; 2262
    • 10h Yang X.-F, Ding C.-H, Li X.-H, Huang J.-Q, Hou X.-L, Dai L.-X, Wang P.-J. J. Org. Chem. 2012; 77: 8980
    • 10i Li X.-H, Zheng B.-H, Ding C.-H, Hou X.-L. Org. Lett. 2013; 15: 6086

      Reviews:
    • 11a Fuji K. Chem. Rev. 1993; 93: 2037
    • 11b Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
    • 11c O’Brien P. J. Chem. Soc., Perkin Trans. 1 2001; 95
    • 11d Christoffers J, Mann A. Angew. Chem. Int. Ed. 2001; 40: 4591
    • 11e Christoffers J, Baro A. Adv. Synth. Catal. 2005; 347: 1473
    • 11f Trost BM, Jiang C. Synthesis 2006; 369
    • 11g Bella M, Casperi T. Synthesis 2009; 1583
    • 11h Hong AY, Stoltz BM. Eur. J. Org. Chem. 2013; 2745

Zoom Image
Figure 1 Some natural products containing the indolin-3-one substructure with an α-quaternary carbon center
Zoom Image
Figure 2 The structure of ligands L1L14