Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(20): 2908-2912
DOI: 10.1055/s-0034-1379478
DOI: 10.1055/s-0034-1379478
letter
Cu(II)/TBAI-Catalyzed Esterification of Acid Hydrazides via C(sp3)–H Oxidative Coupling
Further Information
Publication History
Received: 20 August 2014
Accepted after revision: 22 September 2014
Publication Date:
17 October 2014 (online)

Abstract
A Cu2+/TBAI-cocatalyzed allylic ester synthesis was developed, which allows a direct coupling of acid hydrazides and cycloalkanes. This process makes use of commercially available, inexpensive, and abundant starting materials. Based on the extensive experimental data, a plausible radical mechanism was suggested.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Handbook of C−H Transformations: Applications in Organic Synthesis. Dyker G. Wiley-VCH; Weinheim: 2005
- 1b Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 1c Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 1d Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 1e Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 1f Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 1g Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
- 1h Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 1i Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
- 1j Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 1k Engle KM, Yu J.-Q. J. Org. Chem. 2013; 78: 8927
- 2a Taber DF, Stiriba S.-E. Chem. Eur. J. 1998; 4: 990
- 2b Godula K, Sames D. Science 2006; 312: 67
- 2c Davies HM. L, Manning JR. Nature (London, U.K.) 2008; 451: 417
- 2d Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
- 2e McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
- 2f Brückl T, Baxter RD, Ishihara Y, Baran PS. Acc. Chem. Res. 2012; 45: 826
- 2g Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 3a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 3b Science of Synthesis . Vol. 27. Forsyth CJ. Thieme; Stuttgart: 2008
- 4a Wang DH, Engle KM, Shi BF, Yu J.-Q. Science 2010; 327: 315
- 4b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 5a Kharasch MS, Sosnovsky G, Yang NC. J. Am. Chem. Soc. 1959; 81: 5819
- 5b Kharasch MS, Sosnovsky G. J. Am. Chem. Soc. 1958; 80: 756
- 5c Akermark B, Magnus Larsson E, Oslob JD. J. Org. Chem. 1994; 59: 5729
- 5d Shi E, Shao Y, Chen S, Hu H, Liu Z, Zhang J, Wan X. Org. Lett. 2012; 14: 3384
- 6a Grennberg H, Bäckvall J.-E. Chem. Eur. J. 1998; 4: 1083
- 6b Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
- 6c Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970
- 6d Pilarski LT, Selander N, Böse D, Szabó KJ. Org. Lett. 2009; 11: 5518
- 6e Stang EM, White MC. Nat. Chem. 2009; 1: 547
- 6f Thiery E, Aouf C, Belloy J, Harakat D, Le Bras J, Muzart J. J. Org. Chem. 2010; 75: 1771
- 6g Henderson WH, Check CT, Proust N, Stambuli JP. Org. Lett. 2010; 12: 824
- 6h Campbell AN, White PB, Guzei IA, Stahl SS. J. Am. Chem. Soc. 2010; 132: 15116
- 6i Yin G, Wu Y, Liu G. J. Am. Chem. Soc. 2010; 132: 11978
- 6j Lumbroso A, Koschker Vautravers PN. R, Breit B. J. Am. Chem. Soc. 2011; 133: 2386
- 6k For a review, see: Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191 ; and references cited therein
- 7a García-Cabeza AL, Marín-Barrios R, Moreno-Dorado FJ, Ortega MJ, Massanet GM, Guerra FM. Org. Lett. 2014; 16: 1598
- 7b Chen L, Shi E, Liu ZJ, Chen SL, Wei W, Li H, Xu K, Wan X. Chem. Eur. J. 2011; 17: 4085
- 7c Shi E, Shao Y, Chen SL, Hu HY, Liu ZJ, Zhang J, Wan XB. Org. Lett. 2012; 14: 3384
- 7d Xue Q, Xie J, Xu P, Hu Y, Cheng Y, Zhu C. ACS Catal. 2013; 3: 1365
- 8 Zhao J, Fang H, Han J, Pan Y. Org. Lett. 2014; 16: 2530
- 9 Rout SK, Guin S, Ali W, Gogoi A, Patel BK. Org. Lett. 2014; 16: 3086
- 10 Conde A, Vilella L, Balcells D, Díaz-Requejo MM, Lledós A, Pérez PJ. J. Am. Chem. Soc. 2013; 135: 3887
- 11a Choi J, MacArthur AH. R, Brookhart M, Goldman AS. Chem. Rev. 2011; 111: 1761
- 11b Haibach MC, Kundu S, Brookhart M, Goldman AS. Acc. Chem. Res. 2012; 45: 947
- 12 Synthesis of 3a–p A mixture of 1 (0.2 mmol), cycloalkane (2 mL), Cu(OAc)2 (10 mol%), TBAI (20 mol%), and TBHP (3 equiv) was stirred at 140 °C under N2 atmosphere for 36 h. The reaction mixture was washed with H2O and the aqueous phase was extracted with EtOAc (3×). The combined organic layer was washed with brine, dried over Na2SO4, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to give the corresponding product. Compound 3a: yield 61%. 1H NMR (500 MHz, CDCl3): δ = 8.06 (d, J = 8.4 Hz, 2 H), 7.55 (m, 1 H), 7.42 (dd, J = 8.2, 7.0 Hz, 2 H), 6.01 (m, 1 H), 5.85 (m, 1 H), 5.51 (m, 1 H), 2.15 (m, 1 H), 2.04 (m, 1 H), 1.96 (m, 1 H), 1.84 (m, 1 H), 1.68 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 166.2, 132.8, 132.7, 130.8, 129.5, 128.2, 125.7, 68.5, 28.4, 24.9, 18.9. HRMS: m/z calcd for C13H14O2 [M]+: 202.2491; found: 202.2488. Compound 3b: yield 70%. 1H NMR (500 MHz, CDCl3): δ = 8.00 (d, J = 9.0 Hz, 2 H), 6.90 (d, J = 9.0 Hz, 2 H), 5.96 (m, 1 H), 5.81 (m, 1 H), 5.45 (m, 1 H), 3.82 (s, 3 H), 2.04 (m, 3 H), 1.82 (m, 2 H), 1.67 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 165.9, 163.2, 132.5, 131.5, 125.9, 123.2, 113.4, 68.2, 55.3, 28.4, 24.9, 18.9. HRMS: m/z calcd for C14H16O3 [M]+: 232.2750; found: 232.2755. Compound 3c: yield 58%. 1H NMR (500 MHz, CDCl3): δ = 7.70 (m, 2 H), 7.13 (m, 2 H), 5.80 (m, 1 H), 5.68 (m, 1 H), 5.35 (m, 1 H), 2.20 (m, 3 H), 1.99–1.65 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 165.8, 137.5, 133.1, 132.2, 130.3, 129.6, 127.7, 126.4, 125.2, 68.0, 28.1, 24.6, 20.8, 18.6.. HRMS: m/z calcd for C14H16O3 [M]+: 232.2750; found: 232.2753 Compound 3d: yield 72%. 1H NMR (500 MHz, CDCl3): δ = 7.52 (dd, J = 8.4, 2.0 Hz, 1 H), 7.40 (d, J = 2.0 Hz, 1 H), 6.69 (m, 1 H), 5.83 (m, 1 H), 5.68 (m, 1 H), 5.28 (m, 1 H), 3.75 (s, 3 H), 3.70 (s, 3 H), 2.20–1.40 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 165.4, 152.4, 148.1, 132.0, 125.5, 123.0, 122.8, 111.5, 109.7, 67.9, 55.4, 28.1, 24.5, 18.2. HRMS: m/z calcd for C15H18O4 [M]+: 262.3010; found: 262.3013. Compound 3e: yield 39%. 1H NMR (500 MHz, CDCl3): δ = 7.90 (d, J = 8.6 Hz, 2 H), 7.56 (d, J = 8.6 Hz, 2 H), 6.01 (m, 1 H), 5.832 (m, 1 H), 5.50 (m, 1 H), 2.05 (m, 3 H), 1.83 (m, 2 H), 1.70 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 165.3, 132.8, 131.4, 130.99, 129.7, 127.67, 125.9, 68.8, 28.4, 24.8, 18.2.. HRMS: m/z calcd for C13H13BrO2 [M]+: 281.1451; found: 281.1450. Compound 3f: yield 30%. 1H NMR (500 MHz, CDCl3): δ = 8.28 (d, J = 8.8 Hz, 2 H), 8.22 (d, J = 8.8 Hz, 2 H), 6.05 (m, 1 H), 5.84 (m, 1 H), 5.55 (m, 1 H), 2.19–1.72 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 164.0, 150.1, 135.9, 133.9, 130.4, 124.7, 123.2, 69.6, 28.0, 24.7, 18.6. HRMS: m/z calcd for C13H13NO4 [M]+: 247.2466; found: 247.2463. Compound 3g: yield 33%. 1H NMR (500 MHz, CDCl3): δ = 8.07 (m, 2 H), 7.10 (m, 2 H), 6.01 (m, 1 H), 5.82 (m, 1 H), 5.50 (m, 1 H), 2.06 (m, 3 H), 1.85 (m, 2 H), 1.70 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 166.9, 165.2, 164.3, 132.9, 132.1, 132.0, 126.9, 125.5, 115.4, 115.2, 68.7, 28.3, 24.9, 18.9. HRMS: m/z calcd for C13H13FO2 [M]+: 220.2395; found: 220.2393. Compound 3h: yield 45%. 1H NMR (500 MHz, CDCl3): δ = 7.98 (d, J = 8.4 Hz, 2 H), 7.40 (d, J = 8.4 Hz, 2 H), 6.01 (m, 1 H), 5.82 (m, 1 H), 5.50 (m, 1 H), 2.05 (m, 3 H), 1.83 (m, 2 H), 1.70 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 165.2, 139.0, 132.9, 130.9, 129.1, 128.5, 125.4, 68.8, 28.3, 24.8, 18.8. HRMS: m/z calcd for C13H13ClO2 [M]+: 236.6941; found: 236.6945. Compound 3i: yield 37%. 1H NMR (500 MHz, CDCl3): δ = 7.80 (m, 1 H), 7.53 (m, 1 H), 7.08 (m, 1 H), 6.00 (m, 1 H), 5.81 (m, 1 H), 5.47 (m, 1 H), 2.03 (m, 3 H), 1.84 (m, 2 H), 1.68 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 161.8, 134.3, 133.1, 132.9, 132.0, 127.5, 125.4, 68.8, 28.2, 24.8, 18.8. HRMS: m/z calcd for C11H12SO2 [M]+: 208.2768; found: 208.2770. Compound 3j: yield 21%. 1H NMR (500 MHz, CDCl3): δ = 7.92 (m, 1 H), 7.64 (m, 1 H), 7.15 (m, 1 H), 6.21 (m, 1 H), 5.89 (m, 1 H), 5.67 (m, 1 H), 2.3 (m, 3 H), 1.88 (m, 2 H), 1.78 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 162.5, 134.9, 134.1, 132.9, 132.0, 128.3, 125.9, 68.8, 28.5, 24.3, 18.1. HRMS: m/z calcd for C11H12O3 [M]+: 192.2112; found: 192.2110. Compound 3m: yield 65%. 1H NMR (500 MHz, CDCl3): δ = 8.02 (d, J = 8.4 Hz, 2 H), 7.53 (t, J = 7.2 Hz, 1 H), 7.40 (m, 2 H), 6.18 (m, 1 H), 5.92 (m, 2 H), 2.65 (m, 1 H), 2.33 (m, 2 H), 1.90 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 166.6, 137.7, 132.7, 130.7, 129.5, 129.4, 128.2, 81.1, 31.2, 29.9. HRMS: m/z calcd for C12H12O2 [M]+: 288.2225; found: 188.2220. Compound 3n: yield 43%. 1H NMR (500 MHz, CDCl3): δ = 8.08 (m, 2 H), 7.57 (m, 1 H), 7.42 (m, 2 H), 5.91 (m, 1 H), 5.79 (m, 1 H), 5.66 (m, 1 H), 2.27 (m, 1 H), 2.14 (m, 1 H), 2.01 (m, 2 H), 1.90–1.66 (m, 3 H), 1.53–1.45 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 166.1, 133.7, 133.0, 132.2, 130.9, 129.8, 128.5, 74.9, 33.1, 28.8, 26.9, 26.8. HRMS: m/z calcd for C14H16O2 [M]+: 216.2756; found: 216.2751. Compound 3o: yield 68%. 1H NMR (500 MHz, CDCl3): δ = 8.02 (d, J = 8.4 Hz, 2 H), 7.55 (t, J = 8.4 Hz, 1 H), 7.43 (t, J = 7.6 Hz, 2 H), 5.93 (m, 1 H), 5.72 (m, 1 H), 5.61 (m, 1 H), 2.33 (m, 1 H), 2.15 (m, 1 H), 2.04 (m, 1 H), 1.66 (m, 6 H), 1.42 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 166.0, 132.7, 130.7, 130.7, 129.8, 129.5, 128.2, 73.0, 35.1, 28.8, 26.4, 25.9, 23.4. HRMS: m/z calcd for C15H18O2 [M]+: 230.3022; found: 230.3019.
For recent reviews on this topic, see:
C–H functionalization in total synthesis:
For selected references, see:
Several groups have described transition-metal-catalyzed C–H oxidation for allylic ester, see: