Synlett 2015; 26(02): 187-192
DOI: 10.1055/s-0034-1379551
letter
© Georg Thieme Verlag Stuttgart · New York

En Route to Novel Furanoside Mimics through Stereoselective Zinc-Mediated Propargylation of N-Benzyl Glycofuranosylamines Using Ultrasound Activation

Cyril Nicolas
Institut de Chimie Organique et Analytique, UMR 7311, Université d’Orléans and CNRS, BP 6759, 45067 Orléans cedex 2, France   Fax: +33(238)417281   Email: olivier.martin@univ-orleans.fr
,
Francis Engo-Ilanga
Institut de Chimie Organique et Analytique, UMR 7311, Université d’Orléans and CNRS, BP 6759, 45067 Orléans cedex 2, France   Fax: +33(238)417281   Email: olivier.martin@univ-orleans.fr
,
Chloé Cocaud
Institut de Chimie Organique et Analytique, UMR 7311, Université d’Orléans and CNRS, BP 6759, 45067 Orléans cedex 2, France   Fax: +33(238)417281   Email: olivier.martin@univ-orleans.fr
,
Olivier R. Martin*
Institut de Chimie Organique et Analytique, UMR 7311, Université d’Orléans and CNRS, BP 6759, 45067 Orléans cedex 2, France   Fax: +33(238)417281   Email: olivier.martin@univ-orleans.fr
› Author Affiliations
Further Information

Publication History

Received: 24 September 2014

Accepted after revision: 25 October 2014

Publication Date:
02 December 2014 (online)


Abstract

Preliminary results on a novel zinc-mediated, ultrasound-promoted chain extension of glycofuranosylamines with a propargyl group are reported. The procedure was applied to d-arabino and d-xylo substrates to give, via Cram-chelate transition states, 1-C-1-(3-trimethylsilyl-2-propynyl)-1-benzylamino pentionols in moderate to good yields and acceptable stereoselectivities (syn/anti ≥4:1). To apply the reaction to the synthesis of galactofuranoside mimics, the d-xylo intermediate was cyclized to afford a 1-C-1-(2-propynyl)-1,4-dideoxy-1,4-imino-l-arabinitol derivative in excellent yield. This building block was used in three examples of CuAAC click reactions with azide compounds to provide the corresponding galactofuranoside mimics.

Supporting Information

Primary Data

 
  • References and Notes

  • 1 Carbohydrates in Chemistry and Biology . Ernst B, Hart GW, Sinay S. Wiley; New York: 2000
  • 2 Iminosugars: From Synthesis to Therapeutic Applications . Compain P, Martin OR. Wiley-VCH; Weinheim: 2007
    • 3a Kajimoto T, Node M. Curr. Top. Med. Chem. 2009; 9: 13
    • 3b Cullen V, Sardi P, Ng J, Xu YH, Sun Y, Tomlinson JJ, Kolodziej P, Kahn I, Saftig P, Woulfe J, Rochet JC, Glicksman MA, Cheng SH, Grabowski GA, Shihabuddin LS, Schlossmacher MG. Ann. Neurol. 2011; 69: 940
    • 3c Lopez O, Merino-Montiel P, Martos S, Gonzalez-Benjumea A In SPR Carbohydrate Chemistry. Pilar Rauter A, Lindhorst T. RSC Publishing; Cambridge: 2012. 215–262
    • 3d Kim JH, Resende R, Wennekes T, Chen HM, Bance N, Buchini S, Watts AG, Pilling P, Streltsov VA, Petric M, Liggins R, Barrett S, McKimm-Breschkin JL, Niikura M, Withers SG. Science 2013; 340: 71
    • 3e Lahiri R, Ansari AA, Vankar YD. Chem. Soc. Rev. 2013; 42: 5102
  • 5 Taha HA, Richards MR, Lowary TL. Chem. Rev. 2013; 113: 1851 ; and references 1–10 cited therein
  • 6 Brennan PJ. Tuberculosis 2003; 83: 91
  • 7 Pan F, Jackson M, Ma YF, McNeil M. J. Bacteriol. 2001; 183: 3991
  • 8 Richards MR, Lowary TL. ChemBioChem 2009; 10: 1920 ; and references therein
  • 10 Lowary TL, Li J. Med. Chem. Commun. 2014; 5: 1130 ; and references cited therein
  • 13 Unpublished results.
  • 14 Ferrières V, Bertho JN, Plusquellec D. Carbohydr. Res. 1998; 311: 25
  • 15 Serra-Vinardell J, Díaz L, Casas J, Grinberg D, Vilageliu L, Michelakakis H, Mavridou I, Aerts JM. F. G, Decroocq C, Compain P, Delgado A. ChemMedChem 2014; 9: 1744
  • 16 Biela A, Oulaïdi F, Gallienne E, Górecki M, Frelek J, Martin OR. Tetrahedron 2013; 69: 3348
  • 17 Behr J.-B, Hottin A, Ndoye A. Org. Lett. 2012; 14: 1536
  • 18 Acharya HP, Miyoshi K, Kobayashi Y. Org. Lett. 2007; 9: 3535
  • 19 Knochel P. Handbook of Functionalized Organometallics. Wiley-VCH; Weinheim: 2005
  • 22 Synthetic Organic Sonochemistry . Luche JL. Plenum Press; New York: 1998
  • 23 Suslick KS, Doktycz S. J. Am. Chem. Soc. 1989; 111: 2342
  • 24 Procedure A: In a 10-mL round-bottom flask under an argon atmosphere were added zinc dust (96.2 mg, 1.47 mmol) and iodine (11.2 mg, 0.04 mmol). The flask was placed under vacuum and the vessel was heated with a heat gun during 5 min. The vessel was filled with argon and allowed to reach r.t. The cycle was repeated once and anhyd THF (2 mL) was then added followed by 3-bromo-1-trimethylsilyl-1-propyne at 0 °C (53 μL, 0.32 mmol; mixture A). The reaction mixture was allowed to warm to r.t. and stirred for a further 2 h. In parallel, a solution of the N-benzyl-2,3,5-tri-O-benzyl-α/β-furanosylamine (0.10 mmol) in anhyd THF (2 mL) under argon was prepared in a 10-mL round-bottom flask (mixture B). Solution A was added to solution B via cannula, avoiding transferring too much zinc powder into solution B. The reaction mixture was stirred under ultrasonication for 48 h (45 °C, 42 kHz, 0.47 W/cm2). The resulting mixture was then filtered through Celite® and the residue was washed with EtOAc. The organic phase was washed with H2O, aq NH4Cl, sat. aq NaHCO3 and dried over MgSO4. The organic phase was filtered and concentrated under vacuum. The residue was purified by column chromatography (silica gel, petroleum ether–EtOAc, 8:2) to give the corresponding propargylated pentitols as a mixture of two diastereomers.
  • 25 Procedure B: In a 10-mL round-bottom flask under an argon atmosphere were added zinc dust (96.2 mg, 1.47 mmol) and iodine (11.2 mg, 0.04 mmol). The flask was placed under vacuum and the vessel was heated with a heat gun during 5 min. The vessel was filled with argon and allowed to reach r.t. The cycle was repeated once and anhyd THF (4 mL) was then added followed by 3-bromo-1-trimethylsilyl-1-propyne (53 μL, 0.32 mmol) and the N-benzyl-2,3,5-tri-O-benzyl-α/β-furanosylamine (0.10 mmol) under argon atmosphere. The reaction mixture was stirred under ultrasonication for 48 h (45 °C, 42 kHz, 0.47 W/cm2). The resulting mixture was then filtered through Celite® and washed with EtOAc. The organic phase was washed with H2O, aq NH4Cl, sat. aq NaHCO3 and dried over MgSO4. The organic phase was filtered and concentrated under vacuum. The residue was purified by column chromatography (silica gel, petroleum ether–EtOAc, 8:2) to give the corresponding propargylated pentitols as a mixture of two diastereomers.
  • 27 Diastereomers of compound 6 could not be separated on regular silica gel column chromatography and were thus further processed as a mixture of isomers.
  • 28 Spectroscopic Data for Selected Compounds:(1R)- and (1S)-1-C-(3-Trimethylsilyl-2-propynyl)-2,3,5-tri-O-benzyl-1-benzylamino-1-deoxy-d-xylitol [(1R)-6 and (1S)-6]: colorless oil; (1R)-6 and (1S)-6 were obtained as a 8:2 mixture of diastereomers; [α]D 20 −17.3° (CHCl3, c = 0.5). 1H NMR (400 MHz, CDCl3/TMS): δ = 7.19–7.36 (m, 20 H), 4.34–4.71 (m, 6 H), 4.12 (d, J = 6.5 Hz, 0.8 H), 4.08–4.11 (dd, J = 8.2, 5.8 Hz, 0.8 H), 4.00–4.06 (m, 0.2 H), 3.88 (d, J = 12.5 Hz, 0.2 H), 3.85 (d, J = 12.1 Hz, 0.8 H), 3.80–3.82 (m, 0.2 H), 3.78 (br d, J = 6.6 Hz, 0.8 H), 3.62–3.70 (m, 1 H), 3.48–3.62 (m, 2.2 H), 3.33 (dd, J = 9.4, 3.6 Hz, 0.8 H), 3.08 (dd, J = 12.0, 4.0 Hz, 0.2 H), 2.71–2.84 (m, 1 H), 2.63–2.70 (m, 0.2 H), 2.48 (dd, J = 16.7, 9.5 Hz, 0.8 H), 0.06–0.19 (m, 9 H). 13C NMR (101 MHz, CDCl3/TMS): δ = 139.1, 138.7, 138.6, 138.5, 138.4, 138.2, 138.1, 137.9, 127.5–128.8, 104.2, 103.7, 88.0, 87.5, 79.0, 78.9, 77.9, 75.3, 73.9, 73.7, 73.6, 73.2, 73.7, 73.2, 73.0, 71.1, 70.8, 68.0, 66.4, 57.3, 53.9, 50.6, 50.6, 22.5, 20.9, 0.1–0.5. IR (film): 3030, 2862, 2171, 1496, 1453, 1360, 1249, 1207, 1071, 1027, 907, 841, 726, 696, 645 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C39H48NO4Si: 622.334712; found: 622.334699.(1R)- and (1S)-1-C-(3-Trimethylsilyl-2-propynyl)-N-benzyl-2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino-l-arabinitol (7): light yellow oil; 8:2 mixture of diastereomers (1R)-7 and (1S)-7; [α]D 20 −14.5° (CHCl3, c = 0.4). 1H NMR (400 MHz, CDCl3/TMS): δ = 7.14–7.39 (m, 20 H), 4.22–4.60 (m, 6 H), 4.06–4.12 (m, 0.4 H), 3.97 (d, J = 10.9 Hz, 0.8 H), 3.95 (br s, 0.8 H), 3.91–3.94 (m, 0.2 H), 3.88 (br s, 0.8 H), 3.76 (d, J = 13.9 Hz, 0.8 H), 3.71 (d, J = 14.6 Hz, 0.2 H), 3.53–3.58 (m, 0.4 H), 3.27–3.38 (m, 1.8 H), 3.20–3.26 (m, 0.2 H), 3.07–3.16 (m, 1.6 H), 2.56 (dd, J = 16.6, 9.3 Hz, 0.8 H), 2.44–2.59 (m, 0.2 H), 2.34 (br s, 0.2 H), 2.40 (dd, J = 16.6, 5.1 Hz, 0.8 H), 0.05–0.19 (m, 9 H). 13C NMR (101 MHz, CDCl3/TMS): δ = 139.6, 139.5, 138.7, 138.5, 125.4–129.2, 106.0, 105.2, 86.8, 86.3, 86.0, 85.4, 83.5, 82.7, 73.3, 73.0, 72.7, 71.7, 71.6, 71.0, 72.0, 70.6, 69.7, 66.5, 65.2, 63.8, 59.0, 51.4, 20.8, 19.5, 0.3. IR (film): 3029, 2858, 2172, 1495, 1453, 1363, 1248, 1205, 1097, 1071, 1027, 908, 839, 731, 695, 645 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C39H46NO3Si: 604.324147; found: 604.324106.(1R)-1-C-[1-(3-Hydroxypropyl)triazol-4-ylmethyl]-2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino-l-arabinitol [(1R)-10a]: amber oil; [α]D 20 –4.24° (CHCl3, c = 1.1). 1H NMR (400 MHz, CDCl3/TMS): δ = 7.15–7.35 (m, 21 H), 6.83 (s, 1 H), 4.55 (d, J = 12.2 Hz, 1 H), 4.46 (d, J = 12.3 Hz, 1 H), 4.45 (d, J = 12.0 Hz, 1 H), 4.38 (d, J = 12.0 Hz, 1 H), 4.30 (dt, J = 6.7, 2.2 Hz, 2 H), 4.25 (d, J = 12.1 Hz, 1 H), 4.21 (d, J = 11.9 Hz, 1 H), 4.01 (d, J = 12.0 Hz, 1 H), 3.93 (br s, 1 H), 3.71–3.78 (m, 2 H), 3.52 (t, J = 5.8 Hz, 2 H), 3.43 (dt, J = 9.2, 4.5 Hz, 1 H), 3.35 (dd, J = 12.0, 8.0 Hz, 1 H), 3.03–3.17 (m, 3 H), 2.92 (dd, J = 14.4, 4.4 Hz, 1 H), 1.97 (p, J = 6.5 Hz, 2 H). 13C NMR (101 MHz, CDCl3/TMS): δ = 145.7, 139.4, 138.7, 138.5, 138.3, 127.7–129.4, 122.1, 82.4, 82.1, 73.0, 71.4, 70.8, 71.9, 69.1, 66.6, 59.0, 58.8, 46.7, 32.6, 25.1. IR (neat): 3342, 2919, 2861, 1453, 1097, 1068 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C39H45N4O4: 633.343529; found: 633.343532.(1R)-1-C-[1-(3-Hydroxypropyl)triazol-4-ylmethyl]-1,4-dideoxy-1,4-imino-l-arabinitol [(1R)-11a]: yellow oil; [α]D 20 –4.24° (CHCl3, c = 1.1). 1H NMR (400 MHz, CD3OD/TMS): δ = 7.79 (s, 1 H), 4.47 (t, J = 7.0 Hz, 2 H), 3.86 (dd, J = 3.7, 1.6 Hz, 1 H), 3.78 (dd, J = 4.0, 1.6 Hz, 1 H), 3.68 (dd, J = 10.8, 4.4 Hz, 1 H), 3.65 (dd, J = 11.2, 4.8 Hz, 1 H), 3.57 (t, J = 6.4 Hz, 2 H), 3.44 (dt, J = 7.3, 4.0 Hz, 1 H), 3.02 (dd, J = 14.7, 7.1 Hz, 1 H), 2.96 (br q, J = 4.8 Hz, 1 H), 2.88 (dd, J = 14.6, 7.5 Hz, 1 H), 2.09 (p, J = 6.5 Hz, 2 H). 13C NMR (101 MHz, CD3OD/TMS): δ = 146.6, 124.2, 81.2, 79.1, 68.4, 63.5, 62.5, 59.3, 48.2, 34.0, 26.1. IR (neat): 3265, 2922, 1652, 1557, 1429, 1216, 1060 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C11H20N4O4: 273.155732; found: 273.155429