RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2015; 26(04): 531-536
DOI: 10.1055/s-0034-1379606
DOI: 10.1055/s-0034-1379606
letter
Palladium-Catalyzed Phosphine-Free Direct C–H Arylation of Benzothiophenes and Benzofurans Involving MIDA Boronates
Weitere Informationen
Publikationsverlauf
Received: 30. September 2014
Accepted after revision: 27. Oktober 2014
Publikationsdatum:
09. Januar 2015 (online)

Abstract
With high regioselectivity, a series of benzoheterocyclic compounds were synthesized via palladiium-catalyzed phosphine-free C–H arylation of benzothiophenes/benzofurans with aryl MIDA boronates at 30–50 °C in moderate to excellent yields. MIDA boronates were used in C–H arylation of heterocycles for the first time. Under the optimal conditions, the benzothiophenes could be transformed into the β-arylbenzothiophenes, and the benzofurans gave only α-aryl-substituted products.
Key words
C–H arylation - benzothiophene - benzofuran - MIDA boronate - bis(alkoxo)palladium(II) complexSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379606.
- Supporting Information
-
References and Notes
- 1a Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
- 1b Perepichaka IF, Perepichaka DF, Meng H, Wudl F. Adv. Mater. 2005; 17: 2281
- 1c Coropceanu V, Cornil J, Filho DA. d. S, Olivier Y, Silbey R, Brédas J.-L. Chem. Rev. 2007; 107: 926
- 1d Murphy AR, Fréchet JM. J. Chem. Rev. 2007; 107: 1066
- 1e Mishra A, Ma C.-Q, Bäuerle P. Chem. Rev. 2009; 109: 1141
- 1f Cheng Y.-J, Yang S.-H, Hsu C.-S. Chem. Rev. 2009; 109: 5868
- 1g Nicolaou KC, Hale CR. H, Nilewski C, Ioannidou HA. Chem. Soc. Rev. 2012; 41: 5185
- 1h Wang C.-L, Dong H.-L, Hu W.-P, Liu Y.-Q, Zhu D.-B. Chem. Rev. 2012; 112: 2208
- 2a Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
- 2b Jana R.-J, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 2c Yang J.-F, Liu S.-J, Zheng J.-F, Zhou J.-R. Eur. J. Org. Chem. 2012; 6248
- 2d Ortega N, Urban S, Beiring B, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 1710
- 2e Liu Y, Ma S.-M. Org. Lett. 2012; 14: 720
- 2f Oberli MA, Buchwald SL. Org. Lett. 2012; 14: 4606
- 3a Beccalli S, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
- 3b Li B.-J, Yang S.-D, Shi Z.-J. Synlett 2008; 949
- 3c Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 3d Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
- 3e Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 3f Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 3g Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 3h Kuhl N, Hopkinson MN, WencelDelord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
- 3i Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 4a Chiong HA, Daugulis O. Org. Lett. 2007; 9: 1449
- 4b Nandurkar NS, Bhanushali MJ, Bhor MD, Bhanage BM. Tetrahedron Lett. 2008; 49: 1045
- 4c Ueda K, Yanagisawa S, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2010; 49: 8946
- 4d Tamba S, Okubo Y, Tanaka S, Monguchi D, Mori A. J. Org. Chem. 2010; 75: 6998
- 4e Yanagisawa S, Itami K. Tetrahedron 2011; 67: 4425
- 4f Tang D.-TD, Collins KD, Glorius F. J. Am. Chem. Soc. 2013; 135: 7450
- 5 Kirchberg S, Tani S, Ueda K, Yamaguchi J, Studer A, Itami K. Angew. Chem. Int. Ed. 2011; 50: 2387
- 6 Schnapperelle I, Bach T. ChemCatChem 2013; 5: 3232
- 7 Funaki K, Sato T, Oi S.-C. Org. Lett. 2012; 14: 6186
- 8a Lee SJ, Gray KC, Paek JS, Burke MD. J. Am. Chem. Soc. 2008; 130: 466
- 8b Struble JR, Lee SJ, Burke MD. Tetrahedron 2010; 66: 4710
- 8c Woerly EM, Struble JR, Palyam N, O’Hara SP, Burke MD. Tetrahedron 2011; 67: 4333
- 8d Grob JE, Nunez J, Dechantsreiter MA, Hamann LG. J. Org. Chem. 2011; 76: 10241
- 8e Grob JE, Dechantsreiter MA, Tichkule RB, Connolly MK, Honda A, Tomlinson RC, Hamann LG. Org. Lett. 2012; 14: 5578
- 8f Duncton MA. J, Singh R. Org. Lett. 2013; 15: 4284
- 8g Isley NA, Gallou F, Lipshutz BH. J. Am. Chem. Soc. 2013; 135: 17707
- 9a Mancilla T, Contreras R, Wrackmeyer B. J. Organomet. Chem. 1986; 307: 1
- 9b Gillis EP, Burke MD. J. Am. Chem. Soc. 2007; 129: 6716
- 9c Knapp DM, Gillis EP, Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
- 10 Sävmarker J, Lindh J, Nilsson P, Sjöerg PJ. R, Larhed M. ChemistryOpen 2012; 1: 140
- 11 Li Y.-B, Wang J.-R, Huang M.-M, Wang Z.-W, Wu Y.-S, Wu Y.-J. J. Org. Chem. 2014; 79: 2890
- 12 Preparation of 3aa; Typical ProcedureTo a 10 mL round-bottom flask were added III (3.2 mg, 0.005 mmol, 2 mol%), Ag2O (116 mg, 0.5 mmol, 2 equiv), benzoquinone (14 mg, 0.125 mmol, 0.5 equiv), Cs(tfa) (64 mg, 0.25 mmol, 1 equiv.), benzothiophene (1a; 34 mg, 0.25 mmol, 1 equiv), phenyl MIDA boronate (2a; 86 mg, 0.375 mmol, 1.5 equiv), and H2O–CF3SO3H–TFA (15:2:83; 1 mL). The reaction mixture was stirred at 30–50 °C for 20 h. The suspension was cooled to r.t. and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with 20% aq NaHCO3 solution (40 mL). After evaporation of the solvent the crude product was purified by chromatography on silica gel to give 3-phenylbenzo[b]thiophene (3aa; 46.7 mg, 89% isolated yield) as a yellow oil. This product has been reported previously.4f 3-Phenylbenzo[b]thiophene (3aa) 1H NMR (400 MHz, CDCl3): δ = 7.95–7.88 (m, 2 H), 7.61–7.56 (m, 2 H), 7.51–7.45 (m, 2 H), 7.43–7.35 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 140.65, 138.06, 137.86, 135.98, 128.70, 128.69, 127.52, 124.38, 124.30, 123.39, 122.90 ppm. MS (EI): m/z calcd for C15H12S [M]+: 210.1; found: 210.0.
- 13 CCDC-1008524 (3fa) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 14 CCDC-1008525 (3ia) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 15 Preparation of 5; Typical ProcedureTo a 10 mL round-bottom flask were added III (3.2 mg, 0.005 mmol, 2 mol%), Ag2O (116 mg, 0.5 mmol, 2 equiv), benzoquinone (14 mg, 0.125 mmol, 0.5 equiv), Cs(tfa) (64 mg, 0.25 mmol, 1 equiv), 3aa (52.5 mg, 0.25 mmol, 1 equiv), phenyl MIDA boronate (115 mg, 0.5 mmol, 2.0 equiv), and H2O–CF3SO3H–TFA (15:2:83; 1 mL). The reaction mixture was stirred at 30 °C and 80 °C for 20 h. The suspension was cooled to r.t. and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with 20% aq NaHCO3 solution (40 mL). After evaporation of the solvent the crude product was purified by chromatography on silica gel to give 2,3-diphenylbenzo[b]thiophene (5; 6.4 mg, 9% at 30 °C/25.0 mg, 35% at 80 °C isolated yield) as a white solid; mp 111–113 °C. This product has been reported previously.17 2,3-Diphenylbenzo[b]thiophene (5) 1H NMR (400 MHz, CDCl3): δ = 7.88–7.84 (m, 1 H), 7.61–7.56 (m, 1 H), 7.42–7.28 (m, 9 H), 7.25–7.20 (m, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 140.88, 139.54, 138.85, 135.52, 134.24, 133.24, 130.43, 129.61, 128.63, 128.33, 127.68, 127.36, 124.51, 124.42, 123.34, 122.05 ppm. MS (EI): m/z calcd for C20H14S [M]+: 286.1; found: 286.0.
- 16 Preparation of 6; Typical ProcedureTo a 10 mL round-bottom flask were added III (3.2 mg, 0.005 mmol, 2 mol%), Ag2O (116 mg, 0.5 mmol, 2 equiv), benzoquinone (14 mg, 0.125 mmol, 0.5 equiv), Cs(tfa) (64 mg, 0.25 mmol, 1 equiv), 6 (56mg, 0.25 mmol, 1 equiv), phenyl MIDA boronates (115 mg, 0.5 mmol, 2.0 equiv), and H2O–CF3SO3H–TFA (15:2:83; 1 mL). The reaction mixture was stirred at 30 °C and 80 °C for 20 h. The suspension was cooled to r.t. and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with 20% aq NaHCO3 solution (40 mL). After evaporation of the solvent the crude product was purified by chromatography on silica gel to give 3-phenyl-2-(p-tolyl)benzo[b]thiophene (6.0 mg, 8% at 30 °C/14.3 mg, 19% at 80 °C isolated yield) as a white solid; mp 149–151 °C. This product has been reported previously.18 3-Phenyl-2-(p-tolyl)benzo[b]thiophene (7) 1H NMR (400 MHz, CDCl3): δ = 7.90–7.85 (m, 1 H), 7.59 (d, J = 8.2 Hz, 1 H), 7.45–7.31 (m, 7 H), 7.27–7.21 (m, 2 H), 7.10–7.04 (m, 2 H), 2.33 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 141.00, 139.73, 138.73, 137.61, 135.72, 132.80, 131.33, 130.46, 129.44, 129.08, 128.62, 127.30, 124.37, 123.22, 122.01, 21.17 ppm. MS (EI): m/z calcd for C21H16S [M]+: 300.1; found: 300.0.
- 17 Yue D.-W, Larock RC. J. Org. Chem. 2002; 67: 1905
- 18 Lu W.-D, Wu M.-J. Tetrahedron 2007; 63: 356
For reviews, see:
For recent reviews on Pd-catalyzed C–H activation, see: