Synlett, Table of Contents Synlett 2015; 26(05): 681-687DOI: 10.1055/s-0034-1379888 letter © Georg Thieme Verlag Stuttgart · New York Metal-Free Arylalkylation of N-Aryl Acrylamides with Azobisalkylnitriles Qingshan Tian a Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China Email: kuangcx@tongji.edu.cn , Ping He a Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China Email: kuangcx@tongji.edu.cn , Chunxiang Kuang* a Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China Email: kuangcx@tongji.edu.cn b Key Laboratory of Yangtze River Water Environment, Ministry of Education, Siping Road 1239, Shanghai 200092, P. R. of China › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A novel metal-free arylalkylation of N-aryl acrylamides with readily available azobisalkylnitriles leading to cyano-containing oxindoles has been developed. The use of readily available azobisalkylnitriles and DTBP as oxidant makes this protocol environmentally benign and practical. Key words Key wordsmetal-free - aryalkylation - acrylamide - AIBN - oxindole Full Text References References and Notes 1a Schore NE. Comprehensive Organic Synthesis . Pergamon Press; New York: 1991 1b Bishop R. Comprehensive Organic Synthesis . Pergamon Press; New York: 1991 2a Fatiadi AJ. Preparation and Synthetic Applications of Cyano Compounds . Patai S, Rappaport Z. Wiley; New York: 1983 2b Larock RC. Comprehensive Organic Transformations . VCH; New York: 1989 2c Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563 3a Leow D, Li G, Mei M.-T, Yu J.-Q. Nature (London, U.K.) 2012; 486: 518 3b Dai H.-X, Li G, Zhang X.-G, Stepan AF, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 7567 3c Yang Y.-F, Cheng G.-J, Liu P, Leow D, Sun T.-Y, Chen P, Zhang X, Yu J.-Q, Wu Y.-D, Houk KN. J. Am. Chem. Soc. 2014; 136: 344 4a Kornblum N, Smiley RA, Blackwood RK, Iffland DC. J. Am. Chem. Soc. 1955; 77: 6269 4b Lindley J. Tetrahedron 1984; 40: 1433 5a Ellis GP. M, Romney-Alexander TM. Chem. Rev. 1987; 87: 779 5b Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049 6a Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948 6b Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374 6c Ren X, Chen J, Chen F, Cheng J. Chem. Commun. 2011; 47: 6725 6d Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272 7a Wan W.-M, Pickett PD, Savina DA, McCormick CL. Polym. Chem. 2014; 5: 819 7b Li L, Shu X, Zhu J. Polymer 2012; 52: 5010 8 Xu H, Liu P.-T, Li Y.-H, Han F.-S. Org. Lett. 2013; 15: 3354 9a Jensen BS. CNS Drug Rev. 2002; 8: 353 9b Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 68: 2209 9c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748 For selected examples, see: 10a Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446 10b Shen T, Yuan Y, Song S, Jiao N. Chem. Commun. 2014; 50: 4115 10c Wei WT, Zhou MB, Fan JH, Liu W, Song RJ, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638 For selected examples, see: 11a Zhou SL, Guo LN, Wang H, Duan XH. Chem. Eur. J. 2013; 19: 12970 11b Yang F, Klumphu P, Liang Y.-M, Lipshutz BH. Chem. Commun. 2014; 50: 936 11c Zhou B, Hou W, Yang Y, Feng H, Li Y. Org. Lett. 2014; 16: 1322 11d Zhou SL, Guo LN, Wang S, Duan XH. Chem. Commun. 2014; 50: 3589 11e Li Z, Zhang Y, Zhang L, Liu ZQ. Org. Lett. 2014; 16: 382 12a Yin F, Wang X. Org. Lett. 2014; 16: 1128 12b Li Y, Sun M, Wang H, Tian Q, Yang S. Angew. Chem. Int. Ed. 2013; 52: 3972 12c Wei XH, Li YM, Zhou AX, Yang TT, Yang SD. Org. Lett. 2013; 15: 4158 13a Jaegli S, Dufour J, Wei HL, Piou T, Duan XH, Vors JP, Neuville L, Zhu J. Org. Lett. 2010; 12: 4498 13b An G, Zhou W, Zhang G, Sun H, Han J, Pan Y. Org. Lett. 2010; 12: 4482 14 Wu T, Mu X, Liu G.-S. Angew. Chem. Int. Ed. 2011; 50: 12578 For selected examples, see: 15a Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343 15b Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985 15c Li L, Deng M, Zheng S, Xiong Y, Tan B, Liu XY. Org. Lett. 2014; 16: 504 16 General Procedure of the Synthesis of Cyano-Containing Oxindoles 2a–t and 3a–f An oven-dried 15 mL screw-capped vial containing 1 (0.2 mmol), AIBN (0.4 mmol), and DTBP (0.3 mmol) were evacuated and purged with Ar gas three times. Then, DCE (2.00 mL) was added via syringe. The reaction mixture was stirred at 80 °C for 16 h. After cooling to r.t., the solvent was evaporated and then the residue was purified on a silica gel column using PE–EtOAc (4:1) as eluent to give the desired product 2 or 3. Three Representative Examples 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-dimethylpropanenitrile (2a) White solid; mp 118 °C. 1H NMR (400 MHz, CDCl3): δ = 7.35 (m, 2 H), 7.14 (t, J = 7.5 Hz, 1 H), 6.93 (d, J = 7.7 Hz, 1 H), 3.27 (s, 3 H), 2.35 (d, J = 14.6 Hz, 1 H), 2.19 (d, J = 14.6 Hz, 1 H), 1.38 (s, 3 H), 1.19 (s, 3 H), 1.11 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 179.67, 143.16, 130.93, 128.65, 124.70, 123.97, 122.48, 108.52, 47.01, 46.56, 30.72, 29.70, 27.44, 26.65, 26.39. IR (thin film): νmax = 3059, 2967, 2936, 2233, 1715, 1609, 1493, 1469, 1377, 1349, 1338, 1136, 1021, 774 cm–1. HRMS (ESI-TOF): m/z calcd for C15H18N2NaO+: 265.1317 [M + Na]+; found: 265.1318. 3-(1-Benzyl-3-methyl-2-oxoindolin-3-yl)-2,2-dimethylpropanenitrile (2b) Clear oil. 1H NMR (400 MHz, CDCl3): δ = 7.38–7.31 (m, 5 H), 7.30–7.24 (m, 2 H), 7.11 (t, d, J = 7.8 Hz, 1 H), 6.87 (d, J = 7.8 Hz, 1 H), 5.16 (d, J = 15.5 Hz, 1 H), 4.76 (d, J = 15.5 Hz, 1 H), 2.39 (d, J = 14.6 Hz, 1 H), 2.26 (d, J = 14.7 Hz, 1 H), 1.43 (s, 3 H), 1.23 (s, 3 H), 1.06 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 179.75, 142.30, 135.77, 130.87, 128.77, 128.52, 127.69, 127.61, 124.88, 124.17, 122.48, 109.51, 47.05, 46.24, 44.10, 30.80, 29.77, 28.12, 26.36. IR (thin film): νmax = 2975, 2926, 1708, 1612, 1489, 1468, 1453, 1380, 1357, 1177, 756 cm–1. HRMS (ESI-TOF): m/z calcd for C21H22N2NaO+: 341.1630 [M + Na]+; found: 341.1633. 2-[(1,3-Dimethyl-2-oxoindolin-3-yl)methyl]-2-methylbutanenitrile (3a) White solid; mp 124 °C. 1H NMR (400 MHz, CDCl3): δ = 7.39–7.30 (m, 2 H), 7.14 (dd, J = 15.7, 7.8 Hz, 1 H), 6.93 (d, J = 7.7 Hz, 1 H), 3.27 (s, 3 H), 2.45 (d, J = 14.6 Hz, 1 H), 2.27 (q, J = 14.7 Hz, 1 H), 2.07 (d, J = 14.6 Hz, 1 H), 1.59–1.53 (m, 1 H), 1.46–1.33 (m, 4 H), 1.04–0.96 (m, 6 H). 13C NMR (100 MHz, CDCl3): δ = 180.04, 179.52, 143.36, 143.02, 131.47, 130.86, 128.63, 138.56, 124.92, 124.26, 123.28, 122.78, 122.57, 122.27, 108.60, 108.44, 46.94, 46.88, 45.40, 44.46, 35.64, 35.49, 35.30, 33.14, 27.84, 27.59, 26.42, 26.38, 25.82, 22.73, 9.12, 8.98. IR (thin film): νmax = 2986, 2927, 2235, 1710, 1609, 1494, 1470, 1361, 1349, 1338, 1136, 1021, 769 cm–1. HRMS (ESI-TOF): m/z calcd for C16H20N2NaO+: 279.1473 [M + Na]+; found: 279.1474. Supplementary Material Supplementary Material Supporting Information