Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(09): 1253-1257
DOI: 10.1055/s-0034-1379911
DOI: 10.1055/s-0034-1379911
letter
Palladium-Catalyzed Heck-Type Coupling via C–N Cleavage
Further Information
Publication History
Received: 02 February 2015
Accepted after revision: 17 March 2015
Publication Date:
02 April 2015 (online)
Abstract
A palladium-catalyzed Heck-type coupling method between arenes and ketone Mannich bases via C–N cleavage to synthesize chalcones is reported. This protocol offers good yields and tolerates a broad range of functional groups. Based on the extensive experimental data, we propose a plausible coulping mechanism.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379911.
- Supporting Information
-
References and Notes
- 1 The authors contributed equally to this work.
- 2 For a review on the bioactivity of chalcones, see: Dimmock JR, Elias DW, Beazely MA, Kandepu NM. Curr. Med. Chem. 1999; 6: 1125
- 3a Konieczny MT, Konieczny W, Sabisz M, Skladanowski A, Wakiec R. J. Med. Chem. 2007; 42: 729
- 3b Kumar D, Kumar NM, Akamatsu K, Kusaka E, Harada H, Ito T. Bioorg. Med. Chem. Lett. 2010; 20: 3916
- 3c Ducki S, Forrest R, Hadfield JA, Kendall A, Lawrence NJ, McGown AT, Rennison D. Bioorg. Med. Chem. Lett. 1998; 8: 1051
- 3d Edenharder R, Petersdorff IV, Rauscher R. Mutat. Res. 1993; 287: 261
- 3e Pandeya SN, Sriram D, Nath G, DeClercq E. Eur. J. Med. Chem. 1999; 9: 25
- 3f Buolamwini JK, Assefa H. J. Med. Chem. 2002; 45: 841
- 3g Nowakowska Z. Eur. J. Med. Chem. 2007; 42: 125
- 3h Ram VJ, Saxena AS, Srivastava S, Chandra S. Bioorg. Med. Chem. Lett. 2000; 10: 2159
- 4a Ribierre J.-C, Cheval G, Huber F, Mager L, Fort A, Muller R, Mery S, Nicoud JF. J. Appl. Phys. 2002; 91: 1710
- 4b Melzer C, Barzoukas M, Fort A, Mery S, Nicoud J.-C. Appl. Phys. Lett. 1997; 71: 2248
- 5 Thebtaranonth C, Thebtaranonth Y In The Chemistry of Enones . Vol. 29. Patai S, Rappoport Z. Wiley; New York: 1989: 199
- 6a Müller TJ. J, Ansorge M, Aktah D. Angew. Chem. Int. Ed. 2000; 39: 1253
- 6b Braun RU, Ansorge M, Müller TJ. J. Chem. Eur. J. 2006; 12: 9081
- 6c Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 5284
- 6d Wu X.-F, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. J. Am. Chem. Soc. 2010; 132: 14596
- 7a Wang D, Zhang Y, Harris A, Gautam LN. S, Chen Y, Shi X.-D. Adv. Synth. Catal. 2011; 353: 2584
- 7b Albaladejo MJ, Alonso F, Yus M. Chem. Eur. J. 2013; 19: 5242
- 7c Bukhari SN. A, Jasamai M, Jantan I, Ahmad W. Mini-Rev. Org. Chem. 2013; 10: 73
- 8a C–HActivation . In Topics in Current Chemistry . Vol. 292. Yu J.-Q, Shi Z.-J. Springer; Berlin: 2010
- 8b Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
- 8c Satoh T, Miura M. Chem. Lett. 2007; 36: 200
- 8d Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 8e Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 8f Daugulis O, Do H.-D, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
- 8g Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 8h Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 8i Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 8j Bugaut X, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 7479
- 8k Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 8l Wencel-Delord J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 8m Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 8n Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 8o Brückl T, Baxter RD, Ishihara Y, Baran PS. Acc. Chem. Res. 2012; 45: 826
- 9 Shang Y.-P, Jie X.-M, Zhou J, Hu P, Huang S.-J, Su W.-P. Angew. Chem. Int. Ed. 2013; 52: 1299
- 10a Terao Y, Kametani Y, Wakui H, Satoh T, Miura M, Nomura M. Tetrahedron 2001; 57: 5967
- 10b Ueno S, Shimizu R, Kuwano R. Angew. Chem. Int. Ed. 2009; 48: 4543
- 10c Stang EM, White MC. J. Am. Chem. Soc. 2011; 133: 14892
- 10d Leskinen MV, Yip K.-T, Valkonen A, Pihko PM. J. Am. Chem. Soc. 2012; 134: 5750
- 10e Moon Y, Kwon D, Hong S. Angew. Chem. Int. Ed. 2012; 51: 11333
- 11a Reichwald C, Shimony O, Sacerdoti-Sierra N, Jaffe CL, Kunick C. Bioorg. Med. Chem. Lett. 2008; 18: 1985
- 11b Reichwald C, Shimony O, Dunkel U, Sacerdoti-Sierra N, Jaffe CL, Kunick C. J. Med. Chem. 2008; 51: 659
- 12 Zhang X.-G, Fan S.-L, He C.-Y, Wan X.-L, Min Q.-Q, Yang J, Jiang Z.-X. J. Am. Chem. Soc. 2010; 132: 4506
- 13 Pennell MN, Sheppard TD, Unthank MS, Turner P. J. Org. Chem. 2011; 76: 1479
- 14 Musumarra G, Ballistreri FP. Org. Magn. Reson. 1980; 14: 384
- 15 Mori A, Miyakawa Y, Ohashi E, Haga T, Maegawa T, Sajiki H. Org. Lett. 2006; 8: 3279
- 16 Ranu BC, Jana R. J. Org. Chem. 2005; 70: 8621
- 17 Liu D.-N, Tian S.-K. Chem. Eur. J. 2009; 15: 4538
- 18 Synthesis of 3a–p A mixture of 1 (0.2 mmol), 2 (0.6 mmol), DMSO (3 mL), Pd(OAc)2 (5 mol%), and Ag2CO3 and Ag2O (1.5 equiv, 1:1) was stirred at 120 °C under air atmosphere for 24 h. To the reaction mixture was added H2O and EtOAc, and the aqueous phase was extracted with EtOAc (3×). The combined organic layer was washed with brine, dried over Na2SO4, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to give the corresponding products (3a,12 3g,13 3h,14 3i–l,9 3m,16 3n,17 3p,q,s–v 9 according to the literature). (E)-3-(2,3,4,6-Tetrafluorophenyl)-1-phenylprop-2-en-1-one (3b) Yield 74%. 1H NMR (500 MHz, CDCl3): δ = 7.85 (d, J = 7.2 Hz, 2 H), 7.78–7.50 (m, 4 H), 7.35 (d, J = 16.8 Hz, 1 H), 7.08 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 190.2, 153.0 (dm, J = 248.0 Hz), 149.9 (dm, J = 251.0 Hz), 148.5 (dm, J = 249.6 Hz), 139.2 (dm, J = 241.2 Hz), 136.8, 135.9 (m), 131.5, 128.6, 126,9, 115.8, 114.1 (m), 102.9 (m). 19F NMR (282 MHz, CDCl3): δ = –118.5 (t, J = 9.6 Hz, 1 F), –134.9 (m, 1 F), –138.7 (dd, J = 19.5, 5.5 Hz, 1 F), –163.8 (m, 1 F). HRMS: m/z calcd for C15H8OF4: 280.0511; found: 280.0517. (E)-3-(2,4,6-Trifluorophenyl)-1-phenylprop-2-en-1-one (3c) Yield 71%. 1H NMR (500 MHz, CDCl3): δ = 7.84 (d, J = 7.0 Hz, 2 H), 7.62–7.50 (m, 4 H), 7.34 (d, J = 16.6 Hz, 1 H), 6.96 (t, J = 9.0 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 189.8, 165.2 (dm, J = 248.8 Hz), 139.1, 135.8 (m), 130.5, 128.9, 127.8, 117.1, 111.9 (m), 101.9 (m). 19F NMR (282 MHz, CDCl3): δ = –105.7 (m, 1 F), –113.1 (t, J = 8.2 Hz, 2 F). HRMS: m/z calcd for C15H9OF3: 262.0605; found: 262.0613. (E)-3-(2,3,5,6-Tetrafluorophenyl)-1-phenylprop-2-en-1-one (3d) Yield 79%. 1H NMR (500 MHz, CDCl3): δ = 7.837–7.75 (m, 3 H), 7.68–7.59 (m, 3 H), 7.35 (d, J = 17.4 Hz, 1 H), 7.15 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 190.3, 149.5 (dm, J = 256.4 Hz), 145.8 (dm, J = 262.5 Hz), 138.7 (m), 137.1, 128.5, 127.6, 118.3 (m), 114.5, 103.6 (t, J = 22.8 Hz). 19F NMR (282 MHz, CDCl3): δ = –139.7 (m, 2 F), –144.8 (m, 2 F). HRMS: m/z calcd for C15H8OF4: 280.0511; found: 280.0508. (E)-3-(4-Cyano-2,3,5,6-tetrafluorophenyl)-1-phenylprop-2-en-1-one (3e) Yield 77%. 1H NMR (500 MHz, CDCl3): δ = 8.04–8.02 (m, 2 H), 7.98 (d, J = 16.0 Hz, 1 H), 7.78 (d, J = 16.0 Hz, 1 H), 7.67–7.55 (m, 3 H). 13C NMR (125 MHz, CDCl3): δ = 188.9, 148.5 (dm, J = 246.3 Hz), 145.3 (dm, J = 257.9 Hz), 138.5 (m), 135.4, 129.9, 128.3, 128.4, 127.5, 116.1 (t, J = 13.7 Hz), 114.7, 99.3 (m). 19F NMR (282 MHz, CDCl3): δ = –132.5 (dd, J = 21.6, 8.0 Hz, 2 F), –138.4 (dd, J = 21.6, 8.2 Hz, 2 F). HRMS: m/z calcd for C16H7ONF4: 305.0464; found: 305.0471. (E)-3-(5-Methyl-2-thienyl)-1-(4-nitrophenyl)-2-propen-1-one (3r) Yield 79%. 1H NMR (500 MHz, CDCl3): δ = 8.14 (d, J = 8.0 Hz, 2 H), 7.95 (d, J = 15.4 Hz, 1 H), 7.68 (d, J = 8.0 Hz, 2 H), 7.34 (d, J = 3.6 Hz, 1 H), 7.25 (d, J = 15.4 Hz, 1 H), 6.88 (d, J = 3.6 Hz, 1 H), 2.62 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 189.8, 146.8, 140.2, 140.0, 139.3, 137.5, 134.2, 129.9, 128.5, 127.3, 118.4, 16.1. HRMS: m/z calcd for C14H11NO3S: 273.0460; found: 273.0465.
For selected examples of the syntheses of organic functional materials from chalcones, see:
For selected books and reviews, see:
For the reactions that involve dehydrogenation to olefins followed by a coupling process, see: