Synlett 2015; 26(09): 1253-1257
DOI: 10.1055/s-0034-1379911
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Heck-Type Coupling via C–N Cleavage

Weizheng Fan
,
Faming Liu
,
Bainian Feng*
Further Information

Publication History

Received: 02 February 2015

Accepted after revision: 17 March 2015

Publication Date:
02 April 2015 (online)


Abstract

A palladium-catalyzed Heck-type coupling method between arenes and ketone Mannich bases via C–N cleavage to synthesize chalcones is reported. This protocol offers good yields and tolerates a broad range of functional groups. Based on the extensive experimental data, we propose a plausible coulping mechanism.

Supporting Information

 
  • References and Notes

  • 1 The authors contributed equally to this work.
  • 2 For a review on the bioactivity of chalcones, see: Dimmock JR, Elias DW, Beazely MA, Kandepu NM. Curr. Med. Chem. 1999; 6: 1125

    • For selected examples of the syntheses of organic functional materials from chalcones, see:
    • 4a Ribierre J.-C, Cheval G, Huber F, Mager L, Fort A, Muller R, Mery S, Nicoud JF. J. Appl. Phys. 2002; 91: 1710
    • 4b Melzer C, Barzoukas M, Fort A, Mery S, Nicoud J.-C. Appl. Phys. Lett. 1997; 71: 2248
  • 5 Thebtaranonth C, Thebtaranonth Y In The Chemistry of Enones . Vol. 29. Patai S, Rappoport Z. Wiley; New York: 1989: 199
  • 9 Shang Y.-P, Jie X.-M, Zhou J, Hu P, Huang S.-J, Su W.-P. Angew. Chem. Int. Ed. 2013; 52: 1299
  • 12 Zhang X.-G, Fan S.-L, He C.-Y, Wan X.-L, Min Q.-Q, Yang J, Jiang Z.-X. J. Am. Chem. Soc. 2010; 132: 4506
  • 13 Pennell MN, Sheppard TD, Unthank MS, Turner P. J. Org. Chem. 2011; 76: 1479
  • 14 Musumarra G, Ballistreri FP. Org. Magn. Reson. 1980; 14: 384
  • 15 Mori A, Miyakawa Y, Ohashi E, Haga T, Maegawa T, Sajiki H. Org. Lett. 2006; 8: 3279
  • 16 Ranu BC, Jana R. J. Org. Chem. 2005; 70: 8621
  • 17 Liu D.-N, Tian S.-K. Chem. Eur. J. 2009; 15: 4538
  • 18 Synthesis of 3a–p A mixture of 1 (0.2 mmol), 2 (0.6 mmol), DMSO (3 mL), Pd(OAc)2 (5 mol%), and Ag2CO3 and Ag2O (1.5 equiv, 1:1) was stirred at 120 °C under air atmosphere for 24 h. To the reaction mixture was added H2O and EtOAc, and the aqueous phase was extracted with EtOAc (3×). The combined organic layer was washed with brine, dried over Na2SO4, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to give the corresponding products (3a,12 3g,13 3h,14 3il,9 3m,16 3n,17 3p,q,sv 9 according to the literature). (E)-3-(2,3,4,6-Tetrafluorophenyl)-1-phenylprop-2-en-1-one (3b) Yield 74%. 1H NMR (500 MHz, CDCl3): δ = 7.85 (d, J = 7.2 Hz, 2 H), 7.78–7.50 (m, 4 H), 7.35 (d, J = 16.8 Hz, 1 H), 7.08 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 190.2, 153.0 (dm, J = 248.0 Hz), 149.9 (dm, J = 251.0 Hz), 148.5 (dm, J = 249.6 Hz), 139.2 (dm, J = 241.2 Hz), 136.8, 135.9 (m), 131.5, 128.6, 126,9, 115.8, 114.1 (m), 102.9 (m). 19F NMR (282 MHz, CDCl3): δ = –118.5 (t, J = 9.6 Hz, 1 F), –134.9 (m, 1 F), –138.7 (dd, J = 19.5, 5.5 Hz, 1 F), –163.8 (m, 1 F). HRMS: m/z calcd for C15H8OF4: 280.0511; found: 280.0517. (E)-3-(2,4,6-Trifluorophenyl)-1-phenylprop-2-en-1-one (3c) Yield 71%. 1H NMR (500 MHz, CDCl3): δ = 7.84 (d, J = 7.0 Hz, 2 H), 7.62–7.50 (m, 4 H), 7.34 (d, J = 16.6 Hz, 1 H), 6.96 (t, J = 9.0 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 189.8, 165.2 (dm, J = 248.8 Hz), 139.1, 135.8 (m), 130.5, 128.9, 127.8, 117.1, 111.9 (m), 101.9 (m). 19F NMR (282 MHz, CDCl3): δ = –105.7 (m, 1 F), –113.1 (t, J = 8.2 Hz, 2 F). HRMS: m/z calcd for C15H9OF3: 262.0605; found: 262.0613. (E)-3-(2,3,5,6-Tetrafluorophenyl)-1-phenylprop-2-en-1-one (3d) Yield 79%. 1H NMR (500 MHz, CDCl3): δ = 7.837–7.75 (m, 3 H), 7.68–7.59 (m, 3 H), 7.35 (d, J = 17.4 Hz, 1 H), 7.15 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 190.3, 149.5 (dm, J = 256.4 Hz), 145.8 (dm, J = 262.5 Hz), 138.7 (m), 137.1, 128.5, 127.6, 118.3 (m), 114.5, 103.6 (t, J = 22.8 Hz). 19F NMR (282 MHz, CDCl3): δ = –139.7 (m, 2 F), –144.8 (m, 2 F). HRMS: m/z calcd for C15H8OF4: 280.0511; found: 280.0508. (E)-3-(4-Cyano-2,3,5,6-tetrafluorophenyl)-1-phenylprop-2-en-1-one (3e) Yield 77%. 1H NMR (500 MHz, CDCl3): δ = 8.04–8.02 (m, 2 H), 7.98 (d, J = 16.0 Hz, 1 H), 7.78 (d, J = 16.0 Hz, 1 H), 7.67–7.55 (m, 3 H). 13C NMR (125 MHz, CDCl3): δ = 188.9, 148.5 (dm, J = 246.3 Hz), 145.3 (dm, J = 257.9 Hz), 138.5 (m), 135.4, 129.9, 128.3, 128.4, 127.5, 116.1 (t, J = 13.7 Hz), 114.7, 99.3 (m). 19F NMR (282 MHz, CDCl3): δ = –132.5 (dd, J = 21.6, 8.0 Hz, 2 F), –138.4 (dd, J = 21.6, 8.2 Hz, 2 F). HRMS: m/z calcd for C16H7ONF4: 305.0464; found: 305.0471. (E)-3-(5-Methyl-2-thienyl)-1-(4-nitrophenyl)-2-propen-1-one (3r) Yield 79%. 1H NMR (500 MHz, CDCl3): δ = 8.14 (d, J = 8.0 Hz, 2 H), 7.95 (d, J = 15.4 Hz, 1 H), 7.68 (d, J = 8.0 Hz, 2 H), 7.34 (d, J = 3.6 Hz, 1 H), 7.25 (d, J = 15.4 Hz, 1 H), 6.88 (d, J = 3.6 Hz, 1 H), 2.62 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 189.8, 146.8, 140.2, 140.0, 139.3, 137.5, 134.2, 129.9, 128.5, 127.3, 118.4, 16.1. HRMS: m/z calcd for C14H11NO3S: 273.0460; found: 273.0465.