Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(07): 953-959
DOI: 10.1055/s-0034-1379961
DOI: 10.1055/s-0034-1379961
letter
Alkylation of Nitrogen-Containing Heterocycles via In Situ Sulfonyl Transfer
Further Information
Publication History
Received: 03 November 2014
Accepted after revision: 05 December 2014
Publication Date:
03 February 2015 (online)
Abstract
A convenient synthesis of N-substituted heterocycles from primary and secondary alcohols and N-sulfonyl heterocycles is described. The reaction proceeds through sulfonyl transfer and in situ formation of activated alcohol derivatives. The formation of alkyl sulfonates as transient intermediates mitigates challenges associated with isolation of these reactive species. N-Sulfonyl heteroarenes were found to be stable over prolonged time, and efficiently coupled to a variety of alcohols.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379961. Included are procedures and characterization data for compounds 3a–3p, 4a–4n, and 8–13.
- Supporting Information
-
References and Notes
- 1a de Paulis T, Hemstapat K, Chen Y, Zhang Y, Saleh S, Alagille D, Baldwin RM, Tamagnan GD, Conn PJ. J. Med. Chem. 2006; 49: 3332
- 1b Lamberth C. Heterocycles 2007; 71: 1467
- 1c Vicentini CB, Romagnoli C, Andreotti E, Mares D. J. Agric. Food Chem. 2007; 55: 10331
- 1d Lahm GP, Cordova D, Barry JD. Bioorg. Med. Chem. 2009; 17: 4127
- 1e Wickens P, Kluender H, Dixon J, Brennan C, Achebe F, Bacchiocchi A, Bankston D, Bierer D, Brands M, Braun D, Brown MS, Chuang C.-Y, Dumas J, Enyedy I, Hofilena G, Hong Z, Housley T, Jones B, Khire U, Kreiman C, Kumarasinghe E, Lowinger T, Ott-Morgan R, Perkins L, Phillips B, Schoenleber R, Scott WJ, Sheeler R, Redman A, Sun X, Taylor I, Wang L, Wilhelm S, Zhang X, Zhang M, Sullivan E, Carter C, Miglarese M, Levy J. Bioorg. Med. Chem. Lett. 2007; 17: 4378
- 1f Fustero S, Román R, Sanz-Cervera JF, Simón-Fuentes A, Bueno J, Villanova S. J. Org. Chem. 2008; 73: 8545
- 1g Wyatt PG, Woodhead AJ, Berdini V, Boulstridge JA, Carr MG, Cross DM, Davis DJ, Devine LA, Early TR, Feltell RE, Lewis EJ, McMenamin RL, Navarro EF, O’Brien MA, O’Reilly M, Reule M, Saxty G, Seavers LC. A, Smith D.-M, Squires MS, Trewartha G, Walker MT, Woolford AJ.-A. J. Med. Chem. 2008; 51: 4986
- 1h Mowbray CE, Burt C, Corbau R, Gayton S, Hawes M, Perros M, Tran I, Price DA, Quinton FJ, Selby MD, Stupple PA, Webster R, Wood A. Bioorg. Med. Chem. Lett. 2009; 19: 5857
- 2a Fustero S, Simón-Fuentes A, Sanz-Cervera JF. Org. Prep. Proced. Int. U.S.A. 2009; 41: 253
- 2b Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
- 2c Dadiboyena S, Nefzi A. Eur. J. Med. Chem. 2011; 46: 5258
- 2d Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles . Wiley & Sons; New York: 2004. 2nd ed. 179-184
- 2e Yet L. Progress in Heterocyclic Chemistry . Vol. 25. Gribble GW, Joule JA. Elsevier; Amsterdam: 2013: 217
- 2f Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
- 3a Benjes PA, Grimmett MR. Advances in Detailed Reaction Mechanisms . Vol. 3. Coxon JM. JAI Press; Greenwich (CT, USA): 1994: 199 ; and references therein
- 3b Almena I, Díez-Barra E, de la Hoz A, Ruiz J, Sánchez-Migallón A, Elguero J. J. Heterocycl. Chem. 1998; 35: 1263
- 3c Moiseev IK, Makarova NV, Zemtsova MN. Russ. J. Org. Chem. 2003; 39: 1685
- 3d Oresmaa L, Taberman H, Haukka M, Vainiotalo P, Aulaskari P. J. Heterocycl. Chem. 2007; 44: 1445
- 4a Mitsunobu O. Synthesis 1981; 1
- 4b Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
- 5 For alternative strategies of N-alkylation of heterocycles, see: Karchava AV, Melkonyan FS, Yurovskaya MA. Chem. Heterocycl. Compd. 2012; 48: 391
- 6a Piotrowska DG, Wróblewski AE. Tetrahedron 2003; 59: 8405
- 6b Fokin VV, Wu P. Aziridines and Epoxides in Organic Synthesis . Yudin AK. Wiley-VCH; Weinheim: 2006: 443-479
- 6c Piotrowska DG, Wróblewski AE. Tetrahedron 2009; 65: 4310
- 7a Katritzky AR, Zhang G.-F, Pernak J, Fan W.-Q. Heterocycles 1993; 36: 1253
- 7b Eissenstat MA, Weaver JD. III. Tetrahedron Lett. 1995; 36: 2029
- 7c Sobolov SB, Sun J, Cooper BA. Tetrahedron Lett. 1998; 39: 5685
- 7d Denton JR. Synthesis 2010; 775
- 8a Dalton L, Humphrey GL, Cooper MM, Joule JA. J. Chem. Soc., Perkin Trans. 1 1983; 2417
- 8b Rubiralta M, Diez A, Bosch J, Solans X. J. Org. Chem. 1989; 54: 5591
- 8c Rubiralta M, Diez A, Vila C. Tetrahedron 1990; 46: 4443
- 8d Kim TH, Lee G.-J. J. Org. Chem. 1999; 64: 2941
- 8e Kim TH, Lee N, Lee G.-J, Kim JN. Tetrahedron 2001; 57: 7137
- 8f Isaac MB, Xin T, O’Brien A, St-Martin D, Naismith A, MacLean N, Wilson J, Demchyshyn L, Tehim A, Slassi A. Bioorg. Med. Chem. Lett. 2002; 12: 2451
- 9 For a perspective on green chemistry principles, see: Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
- 10a Gordon IM, Maskill H, Ruasse M.-F. Chem. Soc. Rev. 1989; 18: 123
- 10b Pregel MJ, Buncel E. J. Chem. Soc., Perkin Trans. 2 1991; 307
- 11 Sach NW, Richter DT, Cripps S, Tran-Dubé M, Zhu H, Huang B, Cui J, Sutton SC. Org. Lett. 2012; 14: 3886
- 12a Bentley TW, Jones RV. H, Wareham PJ. Tetrahedron Lett. 1989; 30: 4013
- 12b Chen W, Yan R, Tang D, Guo S, Meng X, Chen B. Tetrahedron 2012; 68: 7956
- 12c Voitekhovich SV, Lyakhov AS, Ivashkevich LS, Matulis VE, Grigoriev YV, Gaponik PN, Ivashkevich OA. Tetrahedron 2012; 68: 4962
- 13 See the Supporting Information for further experiments examining regioselectivity. General Procedure for Alkylation of Heterocycles through Sulfonyl Transfer (Procedure 2, SI): The alcohol (0.6 mmol, 1 equiv), sulfonylpyrazole (0.72 mmol, 1.2 equiv) and Cs2CO3 (0.72 mmol, 1.2 equiv) were weighed into a vial. The vial was fitted with a stirring bar and a screw cap with a septum. MeCN (2 mL, 0.3 M) was added, the vial was sealed and heated overnight at 90 °C. No special precautions to exclude air or moisture were taken. After a 16–18 h reaction time, the reaction was diluted with NH4Cl (aq) and EtOAc and, extracted into EtOAc. The aqueous phase was washed with EtOAc (2 ×). The combined organic phases were washed with brine, dried over MgSO4, filtered, and concentrated to give the reaction crude. The crude was purified through column chromatography to give the final product (typically 4-g cartridge, EtOAc and heptanes as solvents). tert-Butyl 4-[2-(4-Cyano-1H-pyrazol-1-yl)ethyl]piperazine-1-carboxylate (3a): yield: 78%; colorless oil (solidified over time); mp 75–76 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (s, 1 H), 7.72 (s, 1 H), 4.21 (t, J = 6.2 Hz, 2 H), 3.31–3.37 (m, 4 H), 2.75 (t, J = 6.0 Hz, 2 H), 2.36 (br m, 4 H), 1.39 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 154.5, 142.0, 134.8, 113.4, 91.9, 79.7, 57.0, 52.8, 50.1, 43.4 (br), 28.3. IR (neat): 3124, 2974, 2929, 2861, 2816, 2233, 1687, 1544, 1421, 1364, 1249, 1169, 1128, 1005 cm–1. HRMS (ESI): m/z [M + H+] calcd for C15H24N5O2: 306.1925; found: 306.1926. tert-Butyl 4-{2-[4-(Trifluoromethyl)-1H-pyrazol-1-yl]ethyl}-piperazine-1-carboxylate (3c): yield: 67%; colorless solid; mp 66–68 °C. 1H NMR (400 MHz, CDCl3): δ = 7.75 (s, 1 H), 7.65 (s, 1 H), 4.22 (t, J = 6.2 Hz, 2 H), 3.37 (br t, J = 5.1 Hz, 4 H), 2.78 (t, J = 6.4 Hz, 2 H), 2.38 (br t, J = 4.7 Hz, 4 H), 1.42 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 154.6, 136.7 (q, J = 2.4 Hz), 128.9 (q, J = 3.7 Hz), 122.5 (q, J = 265.6 Hz), 113.3 (q, J = 38.1 Hz), 79.6, 57.3, 52.9, 50.1, 43.4 (br m), 28.3. 19F NMR (376 MHz, CDCl3): δ = –56.27 (s, 1 F). IR (neat): 2976, 2926, 2856, 2816, 1686, 1574, 1458, 1404, 1366, 1232, 1170, 1114, 1005, 968 cm–1. HRMS (EI): m/z [M + H+] calcd for C15H24F3N4O2: 349.1846; found: 349.1849. 1-[2-(Pyridin-4-yl)ethyl]-1H-pyrazole-4-carbonitrile (3e): yield: 66%; off-white solid; mp 99–101 °C. 1H NMR (400 MHz, CDCl3): δ = 8.45 (d, J = 5.9 Hz, 2 H), 7.77 (s, 1 H), 7.58 (s, 1 H), 6.94 (d, J = 6.2 Hz, 2 H), 4.37 (t, J = 6.8 Hz, 2 H), 3.16 (t, J = 6.8 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 149.8, 145.8, 142.3, 134.4, 123.6, 113.0, 91.7, 52.7, 35.1. IR (neat): 3121, 3069, 3032, 2994, 2954, 2233, 1603, 1544, 1462, 1438, 1417, 1385, 1358, 1158, 999 cm–1. HRMS (EI): m/z [M + H]+ calcd for C11H11N4: 199.0978; found: 199.0978. 1-[(3S,6R)-6-(Benzyloxy)hexahydrofuro[3,2-b]furan-3-yl]-1H-pyrazole-4-carbonitrile (3k): yield: 90%; colorless solid; mp 113–114 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (s, 1 H), 7.82 (s, 1 H), 7.28–7.40 (m, 5 H), 4.88–4.93 (m, 1 H), 4.82 (t, J = 4.7 Hz, 1 H), 4.79 (d, J = 11.3 Hz, 1 H), 4.70 (d, J = 4.7 Hz, 1 H), 4.59 (d, J = 11.7 Hz, 1 H), 4.37 (dd, J = 10.5, 5.5 Hz, 1 H), 4.26 (dd, J = 10.2, 2.0 Hz, 1 H), 4.12 (td, J = 6.6, 4.7 Hz, 1 H), 3.91 (dd, J = 9.0, 6.2 Hz, 1 H), 3.80 (dd, J = 9.4, 7.0 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 142.6, 137.4, 133.4, 128.4, 127.9, 127.8, 113.0, 92.8, 87.3, 81.1, 78.5, 72.8, 72.5, 71.0, 68.4. IR: 3121, 3065, 3031, 2928, 2878, 2234, 1544, 1495, 1454, 1388, 1359, 1324, 1211, 1134, 1099, 1082, 1058, 1021, 984 cm–1. HRMS (EI): m/z [M + H+] calcd for C17H18N3O3: 312.1343; found: 312.1342. tert-Butyl 4-{2-[5,6-Dichloro-2-(methylthio)-1H-benzo[d]-imidazol-1-yl]ethyl}piperazine-1-carboxylate (9): yield: 89%; pale yellow solid; mp 122–123 °C. 1H NMR (400 MHz, CDCl3): δ = 7.68 (s, 1 H), 7.31 (s, 1 H), 4.08 (t, J = 6.6 Hz, 2 H), 3.38 (t, J = 4.7 Hz, 4 H), 2.75 (s, 3 H), 2.66 (t, J = 6.6 Hz, 2 H), 2.42 (br s, 4 H), 1.43 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 155.5, 154.5, 142.7, 135.5, 125.6, 125.4, 119.2, 109.9, 79.6, 56.4, 53.2, 43.4 (br), 42.2, 28.3, 14.7. IR (neat): 2974, 2932, 2861, 2815, 1687, 1457, 1428, 1363, 1300, 1245, 1168, 1127, 1091, 1050, 1005, 864 cm–1. HRMS (ESI): m/z [M + H+] calcd for C19H27Cl2N4O2S: 445.1226; found: 445.1229. tert-Butyl 4-[2-(3-Acetyl-1H-indol-1-yl)ethyl]piperazine-1-carboxylate (13): yield: 88%; yellow solid; mp 107–108 °C. 1H NMR (400 MHz, CDCl3): δ = 8.34–8.40 (m, 1 H), 7.81 (s, 1 H), 7.32–7.37 (m, 1 H), 7.26–7.32 (m, 2 H), 4.23 (t, J = 6.6 Hz, 2 H), 3.41 (br t, J = 4.3 Hz, 4 H), 2.77 (t, J = 6.4 Hz, 2 H), 2.50 (s, 3 H), 2.42 (br s, 4 H), 1.46 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 192.8, 154.5, 136.6, 135.3, 126.1, 123.1, 122.5, 122.4, 116.9, 109.5, 79.6, 57.1, 53.0, 44.5, 43.5 (br), 28.3, 27.4. IR (neat): 2975, 2932, 2861, 2814, 1684, 1641, 1527, 1461, 1419, 1389, 1365, 1291, 1243, 1220, 1167, 1127, 1003, 921 cm–1. HRMS (ESI): m/z [M + H+] calcd for C21H30N3O3: 372.2282; found: 372.2278.
For selected recent examples, see:
For reviews on the synthesis of pyrazoles, see:
For work on N-alkylation of heterocycles with halides and sulfonates, see:
The propensity of mesylates substituted with neighboring nucleophilic groups to react is well precedented. See:
For mechanism of sulfonyl transfer, see:
For N-alkylations of azoles examining regioselectivity, see ref. 3 and: