Synlett, Inhaltsverzeichnis Synlett 2015; 26(07): 953-959DOI: 10.1055/s-0034-1379961 letter © Georg Thieme Verlag Stuttgart · New York Alkylation of Nitrogen-Containing Heterocycles via In Situ Sulfonyl Transfer Jane Panteleev* Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, CT 06340, USA eMail: jane.panteleev@pfizer.com , Robert J. Maguire Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, CT 06340, USA eMail: jane.panteleev@pfizer.com , Daniel W. Kung Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, CT 06340, USA eMail: jane.panteleev@pfizer.com › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Erratum zu diesem Artikel: Alkylation of Nitrogen-Containing Heterocycles via In Situ Sulfonyl TransferSynlett 2015; 26(08): 1137-1137DOI: 10.1055/s-0034-1380690 Abstract A convenient synthesis of N-substituted heterocycles from primary and secondary alcohols and N-sulfonyl heterocycles is described. The reaction proceeds through sulfonyl transfer and in situ formation of activated alcohol derivatives. The formation of alkyl sulfonates as transient intermediates mitigates challenges associated with isolation of these reactive species. N-Sulfonyl heteroarenes were found to be stable over prolonged time, and efficiently coupled to a variety of alcohols. Key words Key wordspyrazoles - sulfonyl transfer - N-heterocycles - SN2 reaction - alkylation Volltext Referenzen References and Notes For selected recent examples, see: 1a de Paulis T, Hemstapat K, Chen Y, Zhang Y, Saleh S, Alagille D, Baldwin RM, Tamagnan GD, Conn PJ. J. Med. Chem. 2006; 49: 3332 1b Lamberth C. Heterocycles 2007; 71: 1467 1c Vicentini CB, Romagnoli C, Andreotti E, Mares D. J. Agric. Food Chem. 2007; 55: 10331 1d Lahm GP, Cordova D, Barry JD. Bioorg. Med. Chem. 2009; 17: 4127 1e Wickens P, Kluender H, Dixon J, Brennan C, Achebe F, Bacchiocchi A, Bankston D, Bierer D, Brands M, Braun D, Brown MS, Chuang C.-Y, Dumas J, Enyedy I, Hofilena G, Hong Z, Housley T, Jones B, Khire U, Kreiman C, Kumarasinghe E, Lowinger T, Ott-Morgan R, Perkins L, Phillips B, Schoenleber R, Scott WJ, Sheeler R, Redman A, Sun X, Taylor I, Wang L, Wilhelm S, Zhang X, Zhang M, Sullivan E, Carter C, Miglarese M, Levy J. Bioorg. Med. Chem. Lett. 2007; 17: 4378 1f Fustero S, Román R, Sanz-Cervera JF, Simón-Fuentes A, Bueno J, Villanova S. J. Org. Chem. 2008; 73: 8545 1g Wyatt PG, Woodhead AJ, Berdini V, Boulstridge JA, Carr MG, Cross DM, Davis DJ, Devine LA, Early TR, Feltell RE, Lewis EJ, McMenamin RL, Navarro EF, O’Brien MA, O’Reilly M, Reule M, Saxty G, Seavers LC. A, Smith D.-M, Squires MS, Trewartha G, Walker MT, Woolford AJ.-A. J. Med. Chem. 2008; 51: 4986 1h Mowbray CE, Burt C, Corbau R, Gayton S, Hawes M, Perros M, Tran I, Price DA, Quinton FJ, Selby MD, Stupple PA, Webster R, Wood A. Bioorg. Med. Chem. Lett. 2009; 19: 5857 For reviews on the synthesis of pyrazoles, see: 2a Fustero S, Simón-Fuentes A, Sanz-Cervera JF. Org. Prep. Proced. Int. U.S.A. 2009; 41: 253 2b Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984 2c Dadiboyena S, Nefzi A. Eur. J. Med. Chem. 2011; 46: 5258 2d Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles . Wiley & Sons; New York: 2004. 2nd ed. 179-184 2e Yet L. Progress in Heterocyclic Chemistry . Vol. 25. Gribble GW, Joule JA. Elsevier; Amsterdam: 2013: 217 2f Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735 For work on N-alkylation of heterocycles with halides and sulfonates, see: 3a Benjes PA, Grimmett MR. Advances in Detailed Reaction Mechanisms . Vol. 3. Coxon JM. JAI Press; Greenwich (CT, USA): 1994: 199 ; and references therein 3b Almena I, Díez-Barra E, de la Hoz A, Ruiz J, Sánchez-Migallón A, Elguero J. J. Heterocycl. Chem. 1998; 35: 1263 3c Moiseev IK, Makarova NV, Zemtsova MN. Russ. J. Org. Chem. 2003; 39: 1685 3d Oresmaa L, Taberman H, Haukka M, Vainiotalo P, Aulaskari P. J. Heterocycl. Chem. 2007; 44: 1445 4a Mitsunobu O. Synthesis 1981; 1 4b Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551 5 For alternative strategies of N-alkylation of heterocycles, see: Karchava AV, Melkonyan FS, Yurovskaya MA. Chem. Heterocycl. Compd. 2012; 48: 391 The propensity of mesylates substituted with neighboring nucleophilic groups to react is well precedented. See: 6a Piotrowska DG, Wróblewski AE. Tetrahedron 2003; 59: 8405 6b Fokin VV, Wu P. Aziridines and Epoxides in Organic Synthesis . Yudin AK. Wiley-VCH; Weinheim: 2006: 443-479 6c Piotrowska DG, Wróblewski AE. Tetrahedron 2009; 65: 4310 7a Katritzky AR, Zhang G.-F, Pernak J, Fan W.-Q. Heterocycles 1993; 36: 1253 7b Eissenstat MA, Weaver JD. III. Tetrahedron Lett. 1995; 36: 2029 7c Sobolov SB, Sun J, Cooper BA. Tetrahedron Lett. 1998; 39: 5685 7d Denton JR. Synthesis 2010; 775 8a Dalton L, Humphrey GL, Cooper MM, Joule JA. J. Chem. Soc., Perkin Trans. 1 1983; 2417 8b Rubiralta M, Diez A, Bosch J, Solans X. J. Org. Chem. 1989; 54: 5591 8c Rubiralta M, Diez A, Vila C. Tetrahedron 1990; 46: 4443 8d Kim TH, Lee G.-J. J. Org. Chem. 1999; 64: 2941 8e Kim TH, Lee N, Lee G.-J, Kim JN. Tetrahedron 2001; 57: 7137 8f Isaac MB, Xin T, O’Brien A, St-Martin D, Naismith A, MacLean N, Wilson J, Demchyshyn L, Tehim A, Slassi A. Bioorg. Med. Chem. Lett. 2002; 12: 2451 9 For a perspective on green chemistry principles, see: Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197 For mechanism of sulfonyl transfer, see: 10a Gordon IM, Maskill H, Ruasse M.-F. Chem. Soc. Rev. 1989; 18: 123 10b Pregel MJ, Buncel E. J. Chem. Soc., Perkin Trans. 2 1991; 307 11 Sach NW, Richter DT, Cripps S, Tran-Dubé M, Zhu H, Huang B, Cui J, Sutton SC. Org. Lett. 2012; 14: 3886 For N-alkylations of azoles examining regioselectivity, see ref. 3 and: 12a Bentley TW, Jones RV. H, Wareham PJ. Tetrahedron Lett. 1989; 30: 4013 12b Chen W, Yan R, Tang D, Guo S, Meng X, Chen B. Tetrahedron 2012; 68: 7956 12c Voitekhovich SV, Lyakhov AS, Ivashkevich LS, Matulis VE, Grigoriev YV, Gaponik PN, Ivashkevich OA. Tetrahedron 2012; 68: 4962 13 See the Supporting Information for further experiments examining regioselectivity. General Procedure for Alkylation of Heterocycles through Sulfonyl Transfer (Procedure 2, SI): The alcohol (0.6 mmol, 1 equiv), sulfonylpyrazole (0.72 mmol, 1.2 equiv) and Cs2CO3 (0.72 mmol, 1.2 equiv) were weighed into a vial. The vial was fitted with a stirring bar and a screw cap with a septum. MeCN (2 mL, 0.3 M) was added, the vial was sealed and heated overnight at 90 °C. No special precautions to exclude air or moisture were taken. After a 16–18 h reaction time, the reaction was diluted with NH4Cl (aq) and EtOAc and, extracted into EtOAc. The aqueous phase was washed with EtOAc (2 ×). The combined organic phases were washed with brine, dried over MgSO4, filtered, and concentrated to give the reaction crude. The crude was purified through column chromatography to give the final product (typically 4-g cartridge, EtOAc and heptanes as solvents). tert-Butyl 4-[2-(4-Cyano-1H-pyrazol-1-yl)ethyl]piperazine-1-carboxylate (3a): yield: 78%; colorless oil (solidified over time); mp 75–76 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (s, 1 H), 7.72 (s, 1 H), 4.21 (t, J = 6.2 Hz, 2 H), 3.31–3.37 (m, 4 H), 2.75 (t, J = 6.0 Hz, 2 H), 2.36 (br m, 4 H), 1.39 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 154.5, 142.0, 134.8, 113.4, 91.9, 79.7, 57.0, 52.8, 50.1, 43.4 (br), 28.3. IR (neat): 3124, 2974, 2929, 2861, 2816, 2233, 1687, 1544, 1421, 1364, 1249, 1169, 1128, 1005 cm–1. HRMS (ESI): m/z [M + H+] calcd for C15H24N5O2: 306.1925; found: 306.1926. tert-Butyl 4-{2-[4-(Trifluoromethyl)-1H-pyrazol-1-yl]ethyl}-piperazine-1-carboxylate (3c): yield: 67%; colorless solid; mp 66–68 °C. 1H NMR (400 MHz, CDCl3): δ = 7.75 (s, 1 H), 7.65 (s, 1 H), 4.22 (t, J = 6.2 Hz, 2 H), 3.37 (br t, J = 5.1 Hz, 4 H), 2.78 (t, J = 6.4 Hz, 2 H), 2.38 (br t, J = 4.7 Hz, 4 H), 1.42 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 154.6, 136.7 (q, J = 2.4 Hz), 128.9 (q, J = 3.7 Hz), 122.5 (q, J = 265.6 Hz), 113.3 (q, J = 38.1 Hz), 79.6, 57.3, 52.9, 50.1, 43.4 (br m), 28.3. 19F NMR (376 MHz, CDCl3): δ = –56.27 (s, 1 F). IR (neat): 2976, 2926, 2856, 2816, 1686, 1574, 1458, 1404, 1366, 1232, 1170, 1114, 1005, 968 cm–1. HRMS (EI): m/z [M + H+] calcd for C15H24F3N4O2: 349.1846; found: 349.1849. 1-[2-(Pyridin-4-yl)ethyl]-1H-pyrazole-4-carbonitrile (3e): yield: 66%; off-white solid; mp 99–101 °C. 1H NMR (400 MHz, CDCl3): δ = 8.45 (d, J = 5.9 Hz, 2 H), 7.77 (s, 1 H), 7.58 (s, 1 H), 6.94 (d, J = 6.2 Hz, 2 H), 4.37 (t, J = 6.8 Hz, 2 H), 3.16 (t, J = 6.8 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 149.8, 145.8, 142.3, 134.4, 123.6, 113.0, 91.7, 52.7, 35.1. IR (neat): 3121, 3069, 3032, 2994, 2954, 2233, 1603, 1544, 1462, 1438, 1417, 1385, 1358, 1158, 999 cm–1. HRMS (EI): m/z [M + H]+ calcd for C11H11N4: 199.0978; found: 199.0978. 1-[(3S,6R)-6-(Benzyloxy)hexahydrofuro[3,2-b]furan-3-yl]-1H-pyrazole-4-carbonitrile (3k): yield: 90%; colorless solid; mp 113–114 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92 (s, 1 H), 7.82 (s, 1 H), 7.28–7.40 (m, 5 H), 4.88–4.93 (m, 1 H), 4.82 (t, J = 4.7 Hz, 1 H), 4.79 (d, J = 11.3 Hz, 1 H), 4.70 (d, J = 4.7 Hz, 1 H), 4.59 (d, J = 11.7 Hz, 1 H), 4.37 (dd, J = 10.5, 5.5 Hz, 1 H), 4.26 (dd, J = 10.2, 2.0 Hz, 1 H), 4.12 (td, J = 6.6, 4.7 Hz, 1 H), 3.91 (dd, J = 9.0, 6.2 Hz, 1 H), 3.80 (dd, J = 9.4, 7.0 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 142.6, 137.4, 133.4, 128.4, 127.9, 127.8, 113.0, 92.8, 87.3, 81.1, 78.5, 72.8, 72.5, 71.0, 68.4. IR: 3121, 3065, 3031, 2928, 2878, 2234, 1544, 1495, 1454, 1388, 1359, 1324, 1211, 1134, 1099, 1082, 1058, 1021, 984 cm–1. HRMS (EI): m/z [M + H+] calcd for C17H18N3O3: 312.1343; found: 312.1342. tert-Butyl 4-{2-[5,6-Dichloro-2-(methylthio)-1H-benzo[d]-imidazol-1-yl]ethyl}piperazine-1-carboxylate (9): yield: 89%; pale yellow solid; mp 122–123 °C. 1H NMR (400 MHz, CDCl3): δ = 7.68 (s, 1 H), 7.31 (s, 1 H), 4.08 (t, J = 6.6 Hz, 2 H), 3.38 (t, J = 4.7 Hz, 4 H), 2.75 (s, 3 H), 2.66 (t, J = 6.6 Hz, 2 H), 2.42 (br s, 4 H), 1.43 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 155.5, 154.5, 142.7, 135.5, 125.6, 125.4, 119.2, 109.9, 79.6, 56.4, 53.2, 43.4 (br), 42.2, 28.3, 14.7. IR (neat): 2974, 2932, 2861, 2815, 1687, 1457, 1428, 1363, 1300, 1245, 1168, 1127, 1091, 1050, 1005, 864 cm–1. HRMS (ESI): m/z [M + H+] calcd for C19H27Cl2N4O2S: 445.1226; found: 445.1229. tert-Butyl 4-[2-(3-Acetyl-1H-indol-1-yl)ethyl]piperazine-1-carboxylate (13): yield: 88%; yellow solid; mp 107–108 °C. 1H NMR (400 MHz, CDCl3): δ = 8.34–8.40 (m, 1 H), 7.81 (s, 1 H), 7.32–7.37 (m, 1 H), 7.26–7.32 (m, 2 H), 4.23 (t, J = 6.6 Hz, 2 H), 3.41 (br t, J = 4.3 Hz, 4 H), 2.77 (t, J = 6.4 Hz, 2 H), 2.50 (s, 3 H), 2.42 (br s, 4 H), 1.46 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 192.8, 154.5, 136.6, 135.3, 126.1, 123.1, 122.5, 122.4, 116.9, 109.5, 79.6, 57.1, 53.0, 44.5, 43.5 (br), 28.3, 27.4. IR (neat): 2975, 2932, 2861, 2814, 1684, 1641, 1527, 1461, 1419, 1389, 1365, 1291, 1243, 1220, 1167, 1127, 1003, 921 cm–1. HRMS (ESI): m/z [M + H+] calcd for C21H30N3O3: 372.2282; found: 372.2278. Zusatzmaterial Zusatzmaterial Supporting Information