Synlett 2015; 26(10): 1340-1344
DOI: 10.1055/s-0034-1380533
letter
© Georg Thieme Verlag Stuttgart · New York

Mild Cleavage of N–O Bond of 3,6-Dihydro-1,2-oxazines by Condensation of Aldehydes in Aqueous Media

Gilles Galvani
Institut de Chimie Moléculaire et des Matériaux d’Orsay, (UMR CNRS n° 8182), Bâtiment 410, Université Paris-Sud, 91405 Orsay, France   Email: cyrille.kouklovsky@u-psud.fr
,
Robert Lett
Institut de Chimie Moléculaire et des Matériaux d’Orsay, (UMR CNRS n° 8182), Bâtiment 410, Université Paris-Sud, 91405 Orsay, France   Email: cyrille.kouklovsky@u-psud.fr
,
Cyrille Kouklovsky*
Institut de Chimie Moléculaire et des Matériaux d’Orsay, (UMR CNRS n° 8182), Bâtiment 410, Université Paris-Sud, 91405 Orsay, France   Email: cyrille.kouklovsky@u-psud.fr
› Author Affiliations
Further Information

Publication History

Received: 19 February 2015

Accepted after revision: 12 March 2015

Publication Date:
24 April 2015 (online)


Abstract

The nonreductive cleavage of a model 3,6-dihydro-1,2-oxazine by condensation of 2,2-dimethoxyacetaldehyde under aqueous conditions is investigated. Depending on the pH of the solution, the reaction leads either to the N-acylated 1,4-amino alcohol or to the corresponding stable hemiaminal. The formation of the former is believed to proceed through iminium to oxaziridine rearrangement and not through enamine formation, as confirmed by the use of nonenolizable aldehydes. This procedure allows a very mild, nonreductive cleavage of N–O bonds.

 
  • References and Notes

  • 1 Vogt PF, Miller MJ. Tetrahedron 1998; 54: 1317
  • 2 Streith J, Defoin A. Synlett 1996; 189

    • Sodium or aluminium amalgam:
    • 3a Keck GE, Fleming S, Nickell D, Weider D. Synth. Commun. 1979; 9: 281

    • Zn/AcOH:
    • 3b Baggiolini EG, Lee HL, Pizzolato G, Uskokovic MR. J. Am. Chem. Soc. 1982; 104: 6460

    • LiAlH4:
    • 3c Oppolzer W, Petrilzka M. J. Am. Chem. Soc. 1976; 98: 6722

    • Mo(CO)6:
    • 3d Cicchi S, Goti A, Brandi A, Guarna A, De Sarlo F. Tetrahedron Lett. 1990; 31: 3351

    • Mo(CO)6/NaBH4:
    • 3e Zhang D, Sülling C, Miller MJ. J. Org. Chem. 1998; 63: 885

    • SmI2:
    • 3f Keck GE, McHardy SF, Wager TT. Tetrahedron Lett. 1995; 36: 7419

    • H2, Pd/C:
    • 3g Wovkulich PM, Uskokovic MR. J. Am. Chem. Soc. 1981; 103: 3956

    • Raney Ni:
    • 3h Koizumi T, Hirai H, Yoshii E. J. Org. Chem. 1982; 47: 4004
  • 4 Kouklovsky C, Vincent G In Comprehensive Organic Synthesis II . Vol. 8. Knochel P, Molander GA. Elsevier; Oxford: 2014: 493-534
  • 5 Calvet G, Dussaussois M, Blanchard C, Kouklovsky C. Org. Lett. 2004; 6: 2449
  • 6 Calvet G, Guillot R, Blanchard N, Kouklovsky C. Org. Biomol. Chem. 2005; 3: 4395
  • 7 Galvani G, Calvet G, Blanchard N, Kouklovsky C. Org. Biomol. Chem. 2008; 6: 1063
  • 8 It should be pointed out that aldehyde 2 was reported to be sterically and electronically deactivated towards enamine formation: Storer RI, MacMillan DW. C. Tetrahedron 2004; 60: 7705 ; in our case, the reaction is probably driven by the high nucleophilicity of 1 and the instability of the subsequent enamine
  • 9 Kresze G, Schulz G. Tetrahedron 1961; 12: 7
  • 10 The hemiaminal 5 could be hydrolyzed with hydroxylamine hydrochloride in water at 50 °C, albeit in low yield.
  • 11 Koehler K, Sandstrom W, Cordes EH. J. Am. Chem. Soc. 1964; 86: 2413
  • 12 Hogg JL, Jencks DA, Jencks WP. J. Am. Chem. Soc. 1977; 99: 4772
    • 13a Xin D, Xu X, Yang L. Synthesis 2009; 3399
    • 13b Davis FA, Sheppard AC. Tetrahedron 1989; 45: 5703
    • 13c Grubbs EJ, McCullough JD. Jr, Weber BH, Maley JR. J. Org. Chem. 1966; 31: 1098
  • 14 Typical Experimental ProcedureTo a solution of 3,6-dihydro-1,2-oxazine (2, 51 mg, 0.46 mmol) in aq pH 3 buffer solution (2 mL) was added aq 2,2-dimethoxyacetaldehyde solution (60% solution, 0.16 mL, 1.05 mmol, 2,3 equiv). The solution was stirred in an open flask at 50 °C for 48 h, then cooled and concentrated in vacuo. The residue was triturated with CH2Cl2 (5 mL). After filtration and concentration, the residue was purified by chromatography (10% MeOH–CH2Cl2).
  • 15 Data for Hemiaminal 5 Yellow oil, mixture of stereoisomers, yield 33% (33 mg, 0.15 mmol). 1H NMR (360 MHz, CDCl3): δ = 6.76–6.65 (1 H, br s, NH), 5.96 (1 H, d, J = 10.0 Hz), 5.75 (1 H, dt, J = 10.0, 3.2 Hz), 4.57 (1 H, d, J = 3.2 Hz), 4.49 (1 H, m), 4.23 (1 H, q), 4.12 (1 H, d, J = 3.2 Hz), 3.53 (3 H, s), 3.52 (3 H, s), 2.00–1.60 (4 H, m) ppm. 13C NMR (62.5 MHz, CDCl3): δ = 132.9, 131.6, 130.2, 127.2 (stereoisomers), 104.8 and 99.9 (stereoisomers), 71.9 and 71.7 (stereoisomers), 68.4 and 68.3 (stereoisomers), 56.5, 56.3, 53.9, 53.3 ­(stereoisomers), 48.6 and 44.7 (stereoisomers), 28.9, 25.2, 24.6, 2.31 (stereoisomers) ppm. ESI-HRMS: m/z calcd for ­C11H19NO5Na [MNa+ – MeOH + AcOH]: 268.1161; found: 268.1154.
  • 16 Data for Amide 6 Brown oil, yield 33% (33 mg, 0.15 mmol). 1H NMR (360 MHz, CDCl3): δ = 6.73–6.57 (1 H, br s, NH), 5.95 (1 H, ddd, J = 10.0, 3.3, 2.0 Hz), 5.74 (1 H, dd, J = 10.0, 2.0 Hz), 4.71 (1 H, s), 4.49 (1 H, m), 4.23 (1 H, m), 3.42 (3 H, s), 3.41 (3 H, s), 1.98–1.83 (2 H, m), 1.81–1.67 (2 H, m), 1.63 (1 H, br s) ppm. 13C NMR (75 MHz, CDCl3): δ = 167, 133.1, 130.0, 99.9, 64.3, 53.8, 53.7, 44.3, 28.9, 25.2 ppm. ESI-HRMS: m/z calcd for C11H17NO5Na [MNa+ – MeOH + AcOH]: 266.1034; found: 266.1030.
  • 17 Data for Amide Epimer 7 Colorless oil, yield 33% (33 mg, 0.15 mmol). 1H NMR (360 MHz, CDCl3): δ = 7.20–7.00 (1 H, br d, J = 6.0 Hz, NH), 5.93 (1 H, dt, J = 10.0, 3.5 Hz), 5.85 (1 H, m), 4.73 (1 H, s), 4.12 (1H, br t), 4.08 (1 H, m), 3.42 (3 H, s), 3.41 (3 H, s), 2.19 (2 H, m), 1.87 (1 H, br s), 1.84–1.78 (2 H, m) ppm. 13C NMR (75 MHz, CDCl3): δ = 167, 131.8, 127.1, 99.9, 64.9, 53.9, 53.6, 48.6, 24.7, 23.0 ppm. ESI-HRMS: m/z calcd for C11H17NO5Na [MNa+ – MeOH + AcOH]: 266.1034; found: 266.1029.