Synlett 2016; 27(01): 1-5
DOI: 10.1055/s-0035-1560541
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Evaluation of a Novel Hydrophilic 6,6′-Bis(1,2,4-triazin-3-yl)-2,2′-bipyridine Ligand for Separating Actinide(III) from Lanthanide(III)

Frank W. Lewis*
a   Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK   Email: frank.lewis@northumbria.ac.uk
b   Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
,
Laurence M. Harwood
b   Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
,
Michael J. Hudson
b   Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
,
Ana Núñez
c   Centro de Investigaciones Energéticas, Medio Ambientales y Tecnológicas (CIEMAT), Avda. Complutense, 40.28040-Madrid, Spain
,
Hitos Galán
c   Centro de Investigaciones Energéticas, Medio Ambientales y Tecnológicas (CIEMAT), Avda. Complutense, 40.28040-Madrid, Spain
,
Amparo G. Espartero
c   Centro de Investigaciones Energéticas, Medio Ambientales y Tecnológicas (CIEMAT), Avda. Complutense, 40.28040-Madrid, Spain
› Author Affiliations
Further Information

Publication History

Received: 15 September 2015

Accepted after revision: 02 November 2015

Publication Date:
18 November 2015 (online)


Dedicated to Professor Steven Ley on the occasion of his 70th birthday

Abstract

We report the synthesis and evaluation of a novel hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligand containing carboxylate groups as a selective aqueous complexing agent for the minor actinides over lanthanides. The novel ligand is able to complex and separate Am(III) from Eu(III) in alkaline solutions selectively.

Supporting Information

 
  • References and Notes

  • 1 Current address: Section of Nuclear Fuel Cycle and Materials, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria.
    • 2a Musikas C, Schultz W, Liljenzin J.-O. Solvent Extraction Principles and Practice . Rydberg J, Cox M, Musikas C, Choppin G. Marcel Dekker Inc; New York: 2004. 2nd ed., 507-557
    • 2b Nash KL, Madic C, Mathur J, Lacquement J. The Chemistry of the Actinide and Transactinide Elements . Vol. 1. Katz JJ, Morss LR, Edelstein NM, Fuger J. Springer; Dordrecht: 2006: 2622
  • 3 Salvatores M, Palmiotti G. Prog. Part. Nucl. Phys. 2011; 66: 144
  • 4 Seaborg GT. Radiochim. Acta 1993; 61: 115
  • 7 Geist A, Hill C, Modolo G, Foreman MR. St. J, Weigl M, Gompper K, Hudson MJ, Madic C. Solvent Extr. Ion Exch. 2006; 24: 463
  • 11 Geist A, Müllich U, Magnusson D, Kaden P, Modolo G, Wilden A, Zevaco T. Solvent Extr. Ion Exch. 2012; 30: 433
  • 12 Lewis FW, Harwood LM, Hudson MJ, Geist A, Kozhevnikov VN, Distler P, John J. Chem. Sci. 2015; 6: 4812
  • 14 Lewis FW, Harwood LM, Hudson MJ, Müllich U, Geist A. Chem. Commun. 2015; 51: 9189

    • See for example:
    • 15a Drew MG. B, Foreman MR. S. J, Hill C, Hudson MJ, Madic C. Inorg. Chem. Commun. 2005; 8: 239
    • 15b Foreman MR. S, Hudson MJ, Drew MG. B, Hill C, Madic C. Dalton Trans. 2006; 1645
    • 15c Trumm S, Lieser G, Foreman MR. S, Panak PJ, Geist A, Fanghänel T. Dalton Trans. 2010; 39: 923
    • 15d Harwood LM, Lewis FW, Hudson MJ, John J, Distler P. Solvent Extr. Ion Exch. 2011; 29: 551
    • 15e Lewis FW, Harwood LM, Hudson MJ, Distler P, John J, Stamberg K, Núñez A, Galán H, Espartero AG. Eur. J. Org. Chem. 2012; 1509
  • 17 Khurana JM, Kandpal BM. Tetrahedron Lett. 2003; 44: 4909
  • 18 Pabst GR, Pfüller OC, Sauer J. Tetrahedron 1999; 55: 5047
  • 19 A BTP ligand with ester groups attached to C6 of the triazine rings was reported previously, see: Gehre A, Stanforth SP, Tarbit B. Tetrahedron 2009; 65: 1115
  • 20 Synthesis of BTBP 11: The starting material 10 (0.40 g, 0.664 mmol) was dissolved in THF (90 mL) and a solution of NaOH (0.133 g, 5 equiv) in MeOH (30 mL) was added. The flask was heated under reflux for 3 h. The flask was allowed to cool to r.t. and the insoluble solid was filtered and washed successively with MeOH (40 mL), acetone (10 mL) and CH2Cl2 (10 mL). The solid was allowed to dry in air to afford the novel BTBP 11 as a yellow solid (0.35 g, 92%); mp above 300 °C (from MeOH). 1H NMR (400.1 MHz, D2O): δ = 8.22 (t, J = 7.9 Hz, 2 H, 4-H, 4′-H), 8.55 (dd, J = 7.9, 0.8 Hz, 2 H, 5-H, 5′-H), 8.57 (dd, J = 7.9, 0.8 Hz, 2 H, 3-H, 3′-H). 13C NMR (100.6 MHz, D2O): δ = 124.9 (C-3, C-3′), 125.0 (C-5, C-5′), 139.6 (C-4, C-4′), 151.3 (2 × quat), 152.8 (2 × quat), 154.6 (2 × quat), 155.7 (2 × quat), 161.7 (2 × quat), 169.4 (2 × quat), 169.8 (2 × quat). HRMS (CI, H2O; as tetracarboxylic acid): m/z [M+ H] + for C20H10N8O8: 491.0699; found: 491.0683. Anal. Calcd for C20H6N8O8Na4: C, 41.54; H, 1.05; N, 19.37. Found: C, 41.22; H, 1.37; N, 18.98.
  • 22 Under these conditions, extraction of Am(III) and Eu(III) into the organic phase by TODGA is more thermodynamically favored than back-extraction into the aqueous phase. The sulfonated ligands 46 are also unable to strip Am(III) from the organic phase at this pH.
  • 23 Trumm S, Wipff G, Geist A, Panak PJ, Fanghänel T. Radiochim. Acta 2011; 99: 13