Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(06): 941-945
DOI: 10.1055/s-0035-1560548
DOI: 10.1055/s-0035-1560548
letter
C 2-Symmetric Chiral Sulfoxide-Mediated Intermolecular Interrupted Pummerer Reaction for Enantioselective Construction of C3a-Substituted Pyrroloindolines
Further Information
Publication History
Received: 04 October 2015
Accepted after revision: 22 October 2015
Publication Date:
07 January 2016 (online)
Abstract
The first example of an enantioselective intermolecular interrupted Pummerer reaction has been developed by the utilization of a C 2-symmetric chiral sulfoxide. The reaction was used for the enantioselective synthesis of C3a-substituted pyrroloindolines in a one-pot procedure starting from tryptamine. The synthetic utility of the reaction was further demonstrated by its application to the highly concise total synthesis of (+)-psychotriasine.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560548.
- Supporting Information
-
References and Notes
- 1a Carreño MC. Chem. Rev. 1995; 95: 1717
- 1b Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
- 1c Toru T, Bolm C. Organosulfur Chemistry in Asymmetric Synthesis . Wiley-VCH; Weinheim: 2008
- 1d Carreño MC, Hernández-Torres G, Ribagorda M, Urbano A. Chem. Commun. 2009; 6129
- 2a Walker AJ. Tetrahedron: Asymmetry 1992; 3: 961
- 2b Delouvrié B, Fensterbank L, Nájera F, Malacria M. Eur. J. Org. Chem. 2002; 3507
- 2c Hanquet G, Colobert F, Lanners S, Solladie G. ARKIVOC 2003; (vii): 328
- 2d Pellissier H. Tetrahedron 2006; 62: 5559
- 3a Nakamura S, Takemoto H, Ueno Y, Toru T, Kakumoto T, Hagiwara T. J. Org. Chem. 2000; 65: 469
- 3b García Ruano JL, Aranda MT, Aguirre JM. Tetrahedron 2004; 60: 5383
- 3c Colobert F, Obringer M, Solladié G. Eur. J. Org. Chem. 2006; 1455
- 4a Zucca C, Bravo P, Corradi E, Meille SV, Volonterio A, Zanda M. Molecules 2001; 6: 424
- 4b Midura WH. Tetrahedron Lett. 2007; 48: 3907
- 5a García Ruano JL, Cifuentes García M, Laso NM, Martín Castro AM, Rodríguez Ramos JH. Angew. Chem. Int. Ed. 2001; 40: 2507
- 5b Satoh T, Yoshida M, Ota H. Tetrahedron Lett. 2001; 42: 9241
- 5c Satoh T, Yoshida M, Takahashi Y, Ota H. Tetrahedron: Asymmetry 2003; 14: 281
- 5d Raghavan S, Rajender A. Tetrahedron 2004; 60: 5059
- 5e Maezaki N, Sawamoto H, Suzuki T, Yoshigami R, Tanaka T. J. Org. Chem. 2004; 69: 8387
- 6a García Ruano JL, Fraile A, Martín MR, González G, Fajardo C. J. Org. Chem. 2008; 73: 8484
-
6b García Ruano JL, Núñez AJr, Martín MR, Fraile A. J. Org. Chem. 2008; 73: 9366
- 6c García Ruano JL, Alonso M, Cruz D, Fraile A, Martín MR, Peromingo MT, Tito A, Yuste F. Tetrahedron 2008; 64: 10546
- 6d Cruz D, Yuste F, Martín MR, Tito A, García Ruano JL. J. Org. Chem. 2009; 74: 3820
- 7 For radical additions, see: Toru T, Watanabe Y, Mase N, Tsusaka M, Hayakawa T, Ueno Y. Pure Appl. Chem. 1996; 68: 711
- 8a Wang D, Cao P, Wang B, Jia T, Lou Y, Wang M, Liao J. Org. Lett. 2015; 17: 2420
- 8b Chen L.-Y, Yu X.-Y, Chen J.-R, Feng B, Qi Y.-H, Xiao W.-J. Org. Lett. 2015; 17: 1381
- 8c Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
- 8d Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
- 9a Jonsson E. Tetrahedron Lett. 1967; 38: 3675
- 9b Oae S, Kise M. Bull. Chem. Soc. Jpn. 1970; 43: 1416
- 9c Numata T, Itoh O, Oae S. Tetrahedron Lett. 1979; 21: 1869
- 9d Kita Y, Shibata N, Yoshida N. Tetrahedron Lett. 1993; 34: 4063
- 9e Kita Y, Shibata N, Kawano N, Fukui S, Fujimori C. Tetrahedron Lett. 1994; 35: 3575
- 9f Kita Y, Shibata N, Kawano N, Tohjo T, Fujimori C, Matsumoto K. Tetrahedron Lett. 1995; 36: 115
- 9g Crucianelli M, Bravo P, Arnone A, Corradi E, Meille SV, Zanda M. J. Org. Chem. 2000; 65: 2965
- 9h García Ruano JL, García Paredes C. Tetrahedron Lett. 2000; 41: 261
- 9i García Ruano JL, Alemán J, Padwa A. Org. Lett. 2004; 6: 1757
- 9j Feldman KS, Karatjas AG. Org. Lett. 2006; 8: 4137
- 9k Nagao Y, Miyamoto S, Miyamoto M, Takeshige H, Hayashi K, Sano S, Shiro M, Yamaguchi K, Sei Y. J. Am. Chem. Soc. 2006; 128: 9722
- 10a Kawasaki T, Suzuki H, Sakata I, Nakanishi H, Sakamoto M. Tetrahedron Lett. 1997; 38: 3251
- 10b Higuchi K, Tayu M, Kawasaki T. Chem. Commun. 2011; 47: 6728
- 10c Tayu M, Higuchi K, Inaba M, Kawasaki T. Org. Biomol. Chem. 2013; 11: 496
- 10d Tayu M, Higuchi K, Ishizaki T, Kawasaki T. Org. Lett. 2014; 16: 3613
- 10e Tayu M, Ishizaki T, Higuchi K, Kawasaki T. Org. Biomol. Chem. 2015; 13: 3863
- 11 The syntheses of C 2-symmetric sulfoxides 3a–c are described in the Supporting Information.
- 12 The determination of the absolute configuration of 4a is described in the Supporting Information. Tentative absolute configurations of other products were estimated from that of 4a.
- 13 Synthesis of 4; General Procedure: Acid anhydride (0.20 mmol, 1.0 equiv) was added to a solution of 2 (0.20 mmol, 1.0 equiv) and sulfoxide 3c (26 μL, 0.20 mmol, 1.0 equiv) in EtCN (1.0 mL, 0.20 M) at –78 °C under an argon atmosphere. After stirring for 10 min, DTBP (90 μL, 0.40 mol, 2.0 equiv) was added and the reaction mixture was stirred for a further 10 min. N-Methylindole (25 μL, 0.20 mmol, 1.0 equiv) was added and the reaction mixture was warmed to 0 °C over 10 min with stirring. The reaction mixture was neutralized with saturated aqueous NaHCO3 at 0 °C, and then extracted three times with DCM. The organic layer was washed with brine, dried over MgSO4, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane–EtOAc) to afford the corresponding pyrroloindoline 4.
- 14 Analytical Data for Compound (–)-4a: The ee was determined by chiral HPLC analysis to be 94% ee {CHIRALPAK IA column; hexane–2-propanol (95:5); Rt = 19 (+), 27 (–) min}; [α] d 28 −155.7 (c = 0.07, CHCl3). IR (CHCl3): 1692, 1493, 1452 cm–1. 1H NMR (500 MHz, DMSO-d 6, 80 °C): δ = 2.36 (ddd, J = 12.5, 6.3, 3.5 Hz, 1 H), 2.78 (ddd, J = 12.5, 9.0, 9.0 Hz, 1 H), 3.15–3.28 (m, 1 H), 3.50 (s, 3 H), 3.70 (s, 3 H), 3.94 (ddd, J = 10.5, 7.5, 3.0 Hz, 1 H), 4.58 (d, J = 16.2 Hz, 1 H), 4.69 (d, J = 16.2 Hz, 1 H), 5.84 (s, 1 H), 6.45 (d, J = 7.6 Hz, 1 H), 6.57 (dd, J = 7.6, 7.6 Hz, 1 H), 6.83 (dd, J = 7.6, 7.6 Hz, 1 H), 6.93 (d, J = 7.6 Hz, 1 H), 6.97–7.07 (m, 2 H), 7.09 (dd, J = 7.6, 7.6 Hz, 1 H), 7.11 (s, 1 H), 7.16–7.22 (m, 1 H), 7.22–7.28 (m, 2 H), 7.28–7.32 (m, 2 H), 7.34 (d, J = 7.6 Hz, 1 H). 13C NMR (125 MHz, DMSO-d 6, 80 °C): δ = 31.8, 37.6, 45.0, 49.1, 51.6, 55.1, 86.6, 105.7, 109.4, 116.3, 117.0, 118.2, 119.0, 120.8, 123.0, 125.3, 126.2, 126.48, 126.52, 126.6, 127.7, 132.6, 137.4, 138.7, 148.9, 154.6. MS (EI): m/z (%) = 437 (32) [M]+, 405 (22), 350 (17), 349 (100), 335 (22), 258 (20), 257 (41), 91 (10). HRMS (EI): m/z calcd for C28H27N3O2: 437.2103; found: 437.2102.
- 15a Trost BM, Arndt HC. J. Am. Chem. Soc. 1973; 95: 5288
- 15b Oae S, Furukawa N. Adv. Heterocycl. Chem. 1990; 48: 1
- 15c Sato S, Furukawa N. Top. Curr. Chem. 1999; 205: 89
- 16 One-pot oxidation was carried out because of the instability of 11 during purification.
- 17a Zhou H, He H.-P, Wang Y.-H, Hao X.-J. Helv. Chim. Acta 2010; 93: 1650
- 17b For racemic synthesis, see: Newhouse T, Lewis CA, Eastman KJ, Baran PS. J. Am. Chem. Soc. 2010; 132: 7119
- 17c For enantioselective synthesis, see: Li Q, Xia T, Yao L, Deng H, Liao X. Chem. Sci. 2015; 6: 3599
For reviews of chiral sulfoxides in C–C bond formation, see:
For nucleophilic additions to carbonyl groups, see:
For nucleophilic additions to imine groups, see:
For conjugate additions, see:
For cycloadditions, see:
For recent reports and reviews of chiral sulfoxides in metal catalysts, see:
For isolation of the natural product, see: