Subscribe to RSS
DOI: 10.1055/s-0035-1560577
Mild and Catalyst-Free Microwave-Assisted Synthesis of 4,6-Disubstituted 2-Methylthiopyrimidines – Exploiting Tetrazole as an Efficient Leaving Group
Publication History
Received: 15 June 2015
Accepted after revision: 03 September 2015
Publication Date:
21 October 2015 (online)
Abstract
Typically, 4,6-disubstituted 2-thiomethylpyrimidines are synthesized starting from 4,6-dichloro-2-thiomethylpyrimidine or an amino-substituted precursor. However, these reactions take several hours up to days and require multiple steps. Herein, we report a novel, easy, and quick-to-prepare synthetic intermediate, namely 2-(methylthio)-4,6-di(1H-tetrazol-1-yl)pyrimidine, for the synthesis of these interesting target compounds. The intermediate can be transformed within minutes into desired substituted pyrimidines under mild conditions with moderate to excellent yields. The reaction can be conducted in an automated microwave system, at room temperature or by conventional heating. Furthermore, we demonstrate the robustness of the method in a one-pot procedure.
Keywords
tetrazole - pyrimidine - combinatorial chemistry - medicinal chemistry - nucleophilic aromatic substitutionSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560577.
- Supporting Information
-
References and Notes
- 1a Mohite PB, Bhaskar VH. Adv. Pharm. Bull. 2012; 2: 31
- 1b Upadhayaya RS, Jain S, Sinha N, Kishore N, Chandra R, Arora SK. Eur. J. Med. Chem. 2004; 39: 579
- 2a Herr R. Bioorg. Med. Chem. 2002; 10: 3379
- 2b Myznikov LV, Hrabalek A, Koldobskii GI. Chem. Heterocycl. Compd. 2007; 43: 1
- 2c Ostrovskii VA, Trifonov RE, Popova EA. Russ. Chem. Bull. 2012; 61: 768
- 3 Dominguez C, Toledo-Sherman LM, Winkler D, Brookfield F, De Aguiar Pena PC. WO 2011091153A1, 2011
- 4 Dominguez C, Toledo-Sherman LM, Courtney SM, Prime M, Mitchell W, Brown CJ, De Aguiar Pena PC, Johnson P. WO 2013016488A1, 2013
- 5 Cheng W, Co EW, Kim MH, Klein RR, Le DT, Lew A, Nuss JM, Xu W, Bajjalieh W. WO 2005020921A2, 2005
- 6a Gates PS. WO 9211763, 1992
- 6b Goto T, Ito S, Minegishi N, Yamaoka T, Ueno C, Moriya K, Maurer F, Watanabe R. EP0771797A1, 1997
- 7 Lee C.-S, Balazitov R, Caso L, Davis TW, Du W, Liu R, Moon Y.-c, Paget SD, Ren H, Sydorenko N, Wilde RG. WO 2014081906A2, 2014
- 8 Murphy EA, Cheresh DA, Arnord LD. WO 2011097594A2, 2011
- 9a Tong Y, Penning TD, Florjancic AS, Miyashiro J, Woods KW. US 020120220572A1, 2012
- 9b Trani G, Barker JJ, Bromidge SM, Brookfield FA, Burch JD, Chen Y, Eigenbrot C, Heifetz A, Ismaili M, Hicham A, Johnson A, Krülle TM, MacKinnon CH, Maghames R, McEwan PA, Montalbetti CA. G. N, Ortwine DF, Pérez-Fuertes Y, Vaidya DG, Wang X, Zarrin AA, Pei Z. Bioorg. Med. Chem. Lett. 2014; 24: 5818
- 10 Seganish WM, Brumfield SN, Lim J, Matasi JJ, McElroy WT, Tulshian DB, Lavey BJ, Altman MD, Gibeau CR, Lampe JW, Methot J, Zhu L. WO 2013066729A1, 2013
- 11 Nagata T, Suzuki T, Yoshimura A, Tadano N, Toshiyuki M, Satoh H, Saitoh K, Ohta S. US 20110152519A1, 2011
- 12 Rose FL, Tuey GA. P. J. Chem. Soc. 1946; 81
- 13 Walker SR, Williams RT. Xenobiotica 1972; 2: 69
- 14 Mohite PB, Pandhare RB, Khanage SG. Biointerface Res. Appl. Chem. 2012; 2: 258
- 15 Fujii S, Kobayashi T, Nakatsu A, Miyazawa H, Kagechika H. Chem. Pharm. Bull. 2014; 62: 700
- 16 McCluskey A, Keller PA, Morgan J, Garner J. Org. Biomol. Chem. 2003; 1: 3353
- 17 Packiarajan M. WO 2004034967A2, 2004
- 18 Thomann A, Börger C, Empting M, Hartmann RW. Synlett 2014; 25: 935
- 19 Experimental Procedure for the Synthesis of 2-(Methylthio)-4,6-di(1H-tetrazol-1-yl)pyrimidine (1) 4,6-Dichloro-2-methylthiopyrimidine (195 mg, 1 equiv, 1.0 mmol) and 1H-tetrazole (280 mg, 4 equiv, 4.0 mmol) was dissolved in anhydrous DMF (3 mL). To the orange solution Et3N (580 μL,4 equiv, 4.0 mmol) was given, and the mixture was stirred in a capped vial for 10 min in a CEM Discover SP microwave at 60 °C and 50 W power. The reaction mixture was poured into H2O, filtered, and washed with H2O to yield an off-white solid (yield: 255 mg, 0.97 mmol, 97%); mp 193 ± 3 °C (decomp.). UV-Vis (MeOH): 221, 236, 269, 320 nm. FT-IR: 3168, 3138, 3098, 2161, 1704, 1597, 1563, 1539, 1466, 1446, 1432, 1416, 1403, 1330, 1316, 1307, 1284, 1248, 1189, 1170, 1101, 1092, 1073, 1004, 990, 951, 937, 881, 846, 824, 791, 758, 710, 681, 659 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 10.51 (s, 2 H), 8.24 (s, 1 H), 2.77 (s, 3 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 174.1, 154.9, 142.5, 142.4, 95.8, 14.2 ppm. ESI-MS: m/z = 235.1 [M + H – N2]+, 207.1 [M + H – 2N2]+. HRMS: m/z calcd: 263.05704; found: 263.05688 [M + H]+. CCDC 1052351 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 20 Lieber E, Patinkin SH, Tao HH. J. Am. Chem. Soc. 1951; 73: 1792
- 21 Brown DJ, Mason SF. Chem. Heterocycl. Compd. 1962; 16: 475
- 22 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 23 Nagata T, Masuda K, Maeno S, Miura I. Pest Manage. Sci. 2004; 60: 399
- 24 Arukwe J, Benneche T, Undheim K. J. Chem. Soc., Perkin Trans. 1 1989; 255
- 25 Liang Y.-m, Luo S.-j, Zhang Z.-x, Ma Y.-x. Synth. Commun. 2002; 32: 153
- 26 Hurst DT, Johnson M. Heterocycles 1985; 23: 611
- 27 Jin C, Liang Y.-J, He H, Fu L. Eur. J. Med. Chem. 2011; 46: 429
- 28 List B, Castello C. Synlett 2001; 1687
- 29 Caution: High-nitrogen-content compounds are known to be unstable. Although we experienced no difficulties in handling these compounds, all experiments were performed on a small scale (0.4–1.0 mmol) and with best safety precautions (e.g., gloves, protective eyewear, shield).