Synlett 2016; 27(01): 106-110
DOI: 10.1055/s-0035-1560588
letter
© Georg Thieme Verlag Stuttgart · New York

2-Sulfinyl Oxetanes: Synthesis, Stability and Reactivity

Kate F. Morgan
a   Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK   Email: j.bull@imperial.ac.uk
,
Robert Doran
a   Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK   Email: j.bull@imperial.ac.uk
,
Rosemary A. Croft
a   Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK   Email: j.bull@imperial.ac.uk
,
Ian A. Hollingsworth
b   AstraZeneca Mereside, Alderley Park, Cheshire, SK10 4TG, UK
,
James A. Bull*
a   Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK   Email: j.bull@imperial.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 20 September 2015

Accepted after revision: 20 October 2015

Publication Date:
05 November 2015 (online)


Dedicated to Professor Steven V. Ley CBE FRS on the occasion of his 70th birthday. Happy Birthday Steve!

Abstract

The synthesis of 2-sulfinyl oxetanes is described by a C–C bond-forming cyclisation strategy. Oxetanes bearing electron-poor aryl sulfoxides are shown to be viable targets using this strategy. We report investigations into the sulfoxide magnesium exchange on 2-sulfinyl oxetanes, which resulted in products formed via ligand exchange and ligand coupling pathways. The sulfinyl oxetanes can be readily oxidised to the sulfonyl oxetanes.

Supporting Information

 
  • References and Notes

    • 2a Burkhard JA, Wuitschik G, Rogers-Evans M, Müller K, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 9052
    • 2b Wuitschik G, Carreira M, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Müller K. J. Med. Chem. 2010; 53: 3227
    • 2c Stepan AF, Karki K, McDonald WS, Dorff PH, Dutra JK, DiRico KJ, Won A, Subramanyam C, Efremov IV, O’Donnell CJ, Nolan CE, Becker SL, Pustilnik LR, Sneed B, Sun H, Lu Y, Robshaw AE, Riddell D, O’Sullivan TJ, Sibley E, Capetta S, Atchison K, Hallgren AJ, Miller E, Wood A, Obach RS. J. Med. Chem. 2011; 54: 7772
    • 5a For nucleoside analogues, see: Du J, Chun B.-K, Mosley RT, Bansal S, Bao H, Espiritu C, Lam AM, Murakami E, Niu C, Micolochick Steuer HM, Furman PA, Sofia MJ. J. Med. Chem. 2014; 57: 1826
    • 5b Jonckers TH. M, Vandyck K, Vandekerckhove L, Hu L, Tahri A, Van Hoof S, Lin T.-I, Vijgen L, Berke JM, Lachau-Durand S, Stoops B, Leclercq L, Fanning G, Samuelsson B, Nilsson M, Rosenquist Å, Simmen K, Raboisson P. J. Med. Chem. 2014; 57: 1836
    • 5c For natural product oxetin, see: Omura S, Murata M, Imamura N, Iwai Y, Tanaka H, Furusaki A, Matsumoto T. J. Antibiot. 1984; 37: 1324

      For cyclobutanes, see:
    • 13a Satoh T, Kasuya T, Ishigaki M, Inumaru M, Miyagawa T, Nakaya N, Sugiyama S. Synthesis 2011; 397
    • 13b Ishigaki M, Inumaru M, Satoh T. Tetrahedron Lett. 2011; 52: 5563
  • 14 For sulfinyl-metal exchange and Pd-catalysed cross-coupling on aziridines, see: Hughes M, Boultwood T, Zeppetelli G, Bull JA. J. Org. Chem. 2013; 78: 844

    • For deprotonation at C-2 of substituted oxetanes, see:
    • 16a For phenyl stabilised anion, see: Coppi DI, Salomone A, Perna FM, Capriati V. Chem. Commun. 2011; 47: 9918
    • 16b For ketone stabilised anion, see: Geden JV, Beasley BO, Clarkson GJ, Shipman M. J. Org. Chem. 2013; 78: 12243. Also see ref 8a
  • 17 Optimisation of the reaction parameters included base, number of equivalents of base, time, temperature and rate of addition.
  • 18 We were unable to determine the relative stereochemistry of the diastereoisomeric oxetane products.
  • 19 Typical Procedures; Procedure A: 2-(2-Chlorobenzenesulfinyl)oxetane (2d): A solution of LiHMDS (1.0 M in THF, 0.94 mL, 0.94 mmol) was added dropwise to a solution of sulfoxide 1d (0.30 g, 0.78 mmol) in THF (30 mL) at 0 °C and stirred for 1 h 15 min. The reaction was quenched with sat. aq NH4Cl (20 mL) and extracted with CH2Cl2 (5 × 15 mL). The combined organics were dried (MgSO4), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc–hexane) afforded the sulfinyl oxetane as a mixture of two diastereoisomers 2d-A (12 mg, 6%) followed by 2d-B (62 mg, 37%) both as colourless oils. Minor Diastereoisomer 2d-A: Rf 0.22 (40% EtOAc–hexane). IR (film): 2965, 1724, 1573, 1433, 1357, 1248, 1176, 1103, 1026, 914, 815, 752, 660 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.82 (dd, J = 7.3, 1.8 Hz, 1 H, Ar–H), 7.50 (ddd, J = 8.9, 7.3, 1.3 Hz, 1 H, Ar–H), 7.44 (ddd, J = 8.9, 7.8, 1.8 Hz, 1 H, Ar–H), 7.39 (dd, J = 7.8, 1.3 Hz, 1 H, Ar–H), 5.79 (dd, J = 7.4, 5.3 Hz, 1 H, OCHS), 4.81 (ddd, J = 8.9, 6.7, 5.3 Hz, 1 H, OCHH), 4.68 (ddd, J = 8.3, 6.1, 5.3 Hz, 1 H, OCHH), 3.18–3.18 (m, 1 H, OCH2CHH), 2.47–2.56 (m, 1 H, OCH2CHH). 13C NMR (100 MHz, CDCl3): δ = 136.9 (Cq), 132.2 (Ar–C), 130.3 (Cq), 129.8 (Ar–C), 127.9 (Ar–C), 126.4 (Ar–C), 97.5 (SCHO), 71.5 (OCH2), 18.2 (OCH2 CH2). HRMS (ES): m/z [M+H] calcd for C9H10 35ClO2S: 217.0090; found: 217.0104 (Δ 6.5 ppm). Major Diastereoisomer 2d-B: Rf 0.15 (40% EtOAc–hexane). IR (film): 2965, 1724, 1573, 1433, 1357, 1248, 1176, 1103, 1026, 914, 815, 752, 660 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.92 (dd, J = 7.7, 1.7 Hz, 1 H, Ar–H), 7.50 (ddd, J = 9.0, 7.7, 1.3 Hz, 1 H, Ar–H), 7.43 (ddd, J = 9.0, 7.9, 1.7 Hz, 1 H, Ar–H), 7.36 (dd, J = 7.9, 1.3 Hz, 1 H, Ar–H), 5.75 (dd, J = 7.7, 5.5 Hz, 1 H, OCHS), 4.79 (ddd, J = 8.8, 6.9, 5.2 Hz, 1 H, OCHH), 4.64 (ddd, J = 8.3, 5.9, 5.2 Hz, 1 H, OCHH), 3.23–3.31 (m, 1 H, OCH2CHH), 3.04–3.13 (m, 1 H, OCH2CHH). 13C NMR (100 MHz, CDCl3): δ = 136.8 (Cq), 132.1 (Ar–C), 129.9 (Cq), 129.5 (Ar–C), 128.0 (Ar–C), 127.5 (Ar–C), 94.5 (SCHO), 71.5 (OCH2), 22.7 (OCH2 CH2). HRMS (ES): m/z [M + H] calcd for C9H10 35ClO2S: 217.0090; found: 217.0104 (Δ 6.5 ppm). Procedure B; 2-(Oxetan-2-ylsulfinyl)pyridine (2c): A solution of LDA (1 M in THF, 1.08 mL, 1.08 mmol) was added dropwise to a solution of sulfoxide 1c (0.26 g, 0.71 mmol) in THF (28 mL) at –78 °C and stirred for 15 min. The reaction flask was transferred to a –20 °C bath and stirred for a further 20 min. The reaction was quenched with sat. aq NH4Cl (50 mL) and extracted with CH2Cl2 (5 × 30 mL). The combined organics were dried (MgSO4), filtered and the solvent removed under reduced pressure. Purification by flash chromatography afforded the oxetane as a mixture of two diastereoisomers 2c-A (50 mg, 38%) (20% EtOAc–hexane) followed by 2c-B (68 mg, 51%) (20% CH2Cl2–Et2O) both as white solids. Minor Diastereoisomer 2c-A: mp 71–73 °C. Rf 0.10 (20% CH2Cl2–Et2O). IR (film): 3502, 2970, 2912, 1575, 1449, 1421, 1240, 1088, 1053, 1009, 975, 915, 774, 739 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.61 (d, J = 4.7 Hz, 1 H, Py–H), 8.04 (d, J = 7.8 Hz, 1 H, Py–H), 7.94 (ddd, J = 7.8, 7.5, 1.7 Hz, 1 H, Py–H), 7.37 (ddd, J = 7.5, 4.7, 1.1 Hz, 1 H, Py–H), 5.78 (dd, J = 7.9, 5.6 Hz, 1 H, OCHS), 4.82 (ddd, J = 8.8, 6.9, 5.4 Hz, 1 H, OCHH), 4.65 (ddd, J = 8.4, 6.0, 5.4 Hz, 1 H, OCHH), 3.28–3.39 (m, 1 H, OCH2CHH), 3.05–3.17 (m, 1 H, OCH2CHH). 13C NMR (100 MHz, CDCl3): δ = 161.0 (Py–Cq), 149.5 (Py–C), 137.7 (Py–C), 124.6 (Py–C), 121.4 (Py–C), 97.2 (OCHS), 71.4 (OCH2), 22.7 (OCH2 CH2). HRMS (CI): m/z [M + H] calcd for C8H10NO2S: 184.0432; found: 184.0430 (Δ 1.1 ppm). Major diastereoisomer 2c-B: mp 71–73 °C. Rf 0.15 (20% CH2Cl2–Et2O). IR (film): 3398, 2956, 1573, 1564, 1447, 1418, 1332, 1222, 1113, 1083, 1042, 988, 764, 712 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.61–8.63 (d, J = 4.6 Hz, 1 H, Py–H), 7.90–7.98 (m, 2 H, 2 × Py–H), 7.38 (ddd, J = 6.8, 4.8, 2.2 Hz, 1 H, Py–H), 5.82 (dd, J = 7.4, 5.3 Hz, 1 H, OCHS), 4.80 (ddd, J = 12.0, 6.8, 5.4 Hz, 1 H, OCHH), 4.69 (ddd, J = 11.4, 6.0, 5.4 Hz, 1 H, OCHH), 3.47–3.58 (m, 1 H, OCH2CHH), 3.12–3.22 (m, 1 H, OCH2CHH). 13C NMR (100 MHz, CDCl3): δ = 161.0 (Py–Cq), 149.7 (Py–C), 137.9 (Py–C), 124.6 (Py–C), 120.5 (Py–C), 100.0 (OCHS), 71.5 (OCH2), 18.7 (OCH2 CH2). HRMS (CI): m/z [M + H] calcd for C8H10NO2S: 184.0432; found: 184.0430 (Δ 1.1 ppm).
  • 20 para-Nitrophenyl substrate 1h could not be isolated due to instability and therefore was not investigated further.
  • 21 The alkylsulfinyl oxetanes were unstable to silica gel. Purification of 6 was achieved from 2e where only a short plug of silica gel was required.
    • 22a Oae S, Kawai T, Furukawa N. Tetrahedron Lett. 1984; 25: 69
    • 22b Oae S, Kawai T, Furukawa N, Iwasaki F. J. Chem. Soc., Perkin Trans. 2 1987; 405
    • 22c Oae S, Furukawa N. Heteroaromatic Sulfoxides and Sulfones: Ligand Exchange and Coupling in Sulfuranes and Ipso-Substitutions. In Advances In Heterocyclic Chemistry . Academic Press; San Diego: 1999: 1-63
    • 22d Oae S. Pure Appl. Chem. 1996; 68: 805
    • 22e Also see: Durst T, LeBelle MJ, Van den Elzen R, Tin K.-C. Can. J. Chem. 1974; 52: 761