Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(01): 96-100
DOI: 10.1055/s-0035-1560752
DOI: 10.1055/s-0035-1560752
letter
Formal Synthesis of (–)-Siccanin Using an Enantioselective Domino Wacker/Carbonylation/Methoxylation Reaction
Further Information
Publication History
Received: 07 September 2015
Accepted after revision: 01 October 2015
Publication Date:
20 October 2015 (online)
Dedicated to Professor Steven V. Ley on the occasion of his 70th birthday
Abstract
A formal synthesis of (–)-siccanin was achieved through an enantioselective domino Wacker/carbonylation/methoxylation reaction as the key step to form the chroman ring with a quaternary stereogenic center with 95% ee. The pendant cyclohexyl moiety was introduced through a two-step aldol condensation.
Key words
natural products - domino reaction - aldol reaction - transition-metal catalysis - enantioselective reactionsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560752.
- Supporting Information
-
References and Notes
- 1a Ishibashi KJ. J. Antibiot., Ser. A 1962; 15: 161
- 1b Nozoe S, Suzuki T, Okuda S. Tetrahedron Lett. 1968; 3643
- 1c Nozm S, Hirai K. Tetrahedron 1971; 6073
- 1d Nozoe S, Hirai K, Snatzke F, Snatzke G. Tetrahedron 1974; 30: 2773
- 2a Nozoe S, Suzuki KT. Tetrahedron 1971; 27: 6063
- 2b Hirai K, Nozoe S, Tsuda K, Iitaka Y, Shirasawa M. Tetrahedron Lett. 1967; 2177
- 3a Kitano N, Kondo F, Kusano K, Ishibashi K. US 397429, 1976
- 3b Matsuki M, Hanatsu H, Watanabe T, Ogasawara A, Mikami T, Matsumoto T. Biol. Pharm. Bull. 2006; 29: 919
- 3c Ishibashi K, Hirai K, Arai M, Sugasawa S, Endo A, Yasumura A, Matsuda H, Muramatsu T. Annu. Rep. Sankyo Res. Lab. 1970; 22: 1
- 4 Belloti MG, Riviera L. Chemioterapia: International Journal of the Mediterranean Society of Chemotherapy 1985; 4: 431
- 5 Hirai K, Suzuki KT, Nozoe S. Tetrahedron 1971; 27: 6057
- 6a Trost BM, Shen HC, Surivet JP. Angew. Chem. Int. Ed. 2003; 42: 3943
- 6b Racemic: Kato M, Matsumura Y, Heima K, Fukamiya N, Kabuto C, Yoshikoshi A. Tetrahedron 1987; 43: 711
- 6c Racemic: Trost BM, Fleitz FJ, Watkins WJ. J. Am. Chem. Soc. 1996; 118: 5146
- 7 Trost BM, Shen HC, Surivet JP. J. Am. Chem. Soc. 2004; 126: 12565
- 8 Castillo A, Silva L, Briones D, Quílez del Moral JF, Barrero AF. Eur. J. Org. Chem. 2015; 3266
- 9a Tietze LF, Jackenkroll S, Hierold J, Ma L, Waldecker B. Chem. Eur. J. 2014; 20: 8628
- 9b Tietze LF, Ma L, Reiner JR, Jackenkroll S, Heidemann S. Chem. Eur. J. 2013; 19: 8610
- 9c Tietze LF, Jackenkroll S, Raith C, Spiegl DA, Reiner JR, Ochoa-Campos MC. Chem. Eur. J. 2013; 19: 4876
- 9d Tietze LF, Wolfram T, Holstein JJ, Dittrich B. Org. Lett. 2012; 14: 4035
- 9e Tietze LF, Stecker F, Zinngrebe J, Sommer KM. Chem. Eur. J. 2006; 12: 8770
- 10 Domino Reactions: Concepts for Efficient Organic Synthesis. Tietze LF. Wiley-VCH; Weinheim: 2014
- 11 Experimental Procedure for the Preparation of (R)-5: A solution of palladium(II) trifluoroacetate (48.2 mg, 145 μmol, 5 mol%) and the Bn-BOXAX ligand (R,R)-10 (332 mg, 580 μmol, 20 mol%) in MeOH (10 mL) was stirred at r.t. for 15 min. Alkenyl phenol 7 (598 mg, 2.90 mmol, 1.00 equiv) in MeOH (7 mL) and p-benzoquinone (1.25 g, 11.6 mmol, 4.00 equiv) were added at r.t. and CO gas (1 atm) was passed through the resulting reaction mixture for 5 min. After stirring at r.t. under a CO atmosphere (1 atm) for 19 h, the reaction was quenched at r.t. by addition of 1 M aq HCl (50 mL). The aqueous phase was extracted with MTBE (3 × 25 mL) and the combined organic phases were washed with 1 M aq NaOH (3 × 25 mL). The organic phase was dried over MgSO4 and the solvent was removed in vacuo. Column chromatography on silica gel (n-hexane–Et2O 10:1→8:2) gave ester (R)-5 (544 mg, 2.06 mmol, 71%, 95% ee) as a colorless oil; [α]D = 8.2 (c = 0.50, CHCl3, 24.0 °C). 1H NMR (300 MHz, CDCl3): δ = 1.42 (s, 3 H, 2'-CH3), 1.85 (dt, J = 13.8, 6.8 Hz, 1 H, 3'-Ha), 1.99 (dt, J = 13.8, 6.8 Hz, 1 H, 3'-Hb), 2.26 (s, 3 H, 7'-CH3), 2.55–2.66 (m, 4 H, 2-H2, 4'-H2), 3.68 (s, 3 H, 1-OCH3), 3.79 (s, 3 H, 5'-OCH3), 6.24, 6.29 (2 × s, 2 H, 6'-H, 8'-H). 13C NMR (125 MHz, CDCl3): δ = 16.4 (C-4'), 21.5 (7'-CH3), 24.6 (2'-CH3), 30.3 (C-3'), 43.5 (C-2), 51.5 (1-OCH3), 55.3 (5'-OCH3), 74.2 (C-2'), 102.9, 110.4 (C-6', C-8'), 106.8 (C-4a'), 137.1 (C-7'), 153.5 (C-5'), 157.5 (C-8a'), 170.9 (C-1). IR (ATR): 2936, 2856, 1734, 1619, 1584, 1352, 1224, 1103, 1020, 811 cm–1. UV (MeCN): λmax (lg ε) = 208.0 (4.678), 272.0 (3.087) nm. Analytical HPLC (Daicel Chiracel OD; 4.6 × 250 mm, 5 μm, n-hexane–i-PrOH 98:2; 0.8 mL/min; 234 nm): tR = 18.2 [(–)-(S)-5, 2.3%], 26.6 [(+)-(R)-5, 97.7%] min; 95% ee. MS (ESI): m/z (%) = 551.3 (99) [2M + Na]+, 303.1 (11) [M + K]+, 287.1 (100) [M + Na]+, 265.2 (91) [M + H]+. HRMS (ESI): m/z [M + H]+ calcd for C15H20O4 (264.32): 265.1434; found: 265.1434; m/z [M + Na]+ calcd: 287.1251; found: 287.1254.
- 12a Rubottom GM, Mott RC. J. Org. Chem. 1979; 44: 1731
- 12b Kharasch MS, Tawney PO. J. Am. Chem. Soc. 1941; 63: 2308
- 12c Reetz MT, Kindler A. J. Organomet. Chem. 1995; 502: C5
- 13 Olpp T, Brückner R. Angew. Chem. Int. Ed. 2003; 44: 1610
- 14 Smith AB. III, Nolen EG, Shirai R, Blase FR, Ohta M, Chida N, Hartz RA, Fitch DM, Clark WM, Sprengeler PA. J. Org. Chem. 1995; 60: 7837
- 15 O’Grodnick JS, Ebersole RC, Wittstruck T, Caspi E. J. Org. Chem. 1974; 39: 2124
- 16 Martin JC, Arhart RJ. J. Am. Chem. Soc. 1971; 93: 4327
- 17 Tietze LF, Krimmelbein I. Chem. Eur. J. 2008; 14: 1541