Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(01): 6-10
DOI: 10.1055/s-0035-1560813
DOI: 10.1055/s-0035-1560813
letter
Cation-Directed Enantioselective N-Functionalization of Pyrroles
Further Information
Publication History
Received: 17 September 2015
Accepted after revision: 14 October 2015
Publication Date:
05 November 2015 (online)
Dedicated to Prof. Steven V. Ley on the occasion of his 70th birthday
Abstract
A catalytic enantioselective N-functionalization of pyrroles has been developed. Imines formed in situ via condensation underwent cation-directed cyclization with complete N-regioselectivity. The cyclized products were obtained with enantiomeric ratios up to 96:4 for aldimine substrates and up to 99:1 for trifluoromethyl ketimines. The reaction proceeds without an acidifying group on the pyrrole and offers a new approach to the generation of chiral nonracemic aminals.
Key words
pyrroles - phase-transfer catalysis - organocatalysis - asymmetric synthesis - chiral aminalsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560813.
- Supporting Information
-
References and Notes
- 1a Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
- 1b Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
- 1c Abbott BJ, Fukuda DS, Dorman DE, Occolowitz JL, Debono M, Farhner L. Antimicrob. Agents Chemother. 1979; 16: 808
- 2 Thirumalairajan S, Pearce BM, Thompson A. Chem. Commun. 2010; 46: 1797
- 3a Paras NA, MacMillan DW. C. J. Am. Chem. Soc. 2001; 123: 4370
- 3b Blay G, Fernández I, Monleón A, Pedro JR, Vila C. Org. Lett. 2009; 11: 441
- 3c Banwell MG, Beck DA. S, Smith JA. Org. Biomol. Chem. 2004; 2: 157
- 4 Hodous BL, Fu GC. J. Am. Chem. Soc. 2002; 124: 10006
- 5a Trost BM, Dong G. Org. Lett. 2007; 9: 2357
- 5b Trost BM, Osipov M, Dong G. J. Am. Chem. Soc. 2010; 132: 15800
- 5c Trost BM, Dong G. J. Am. Chem. Soc. 2006; 128: 6054
- 5d Sun X.-T, Chen A. Tetrahedron Lett. 2007; 48: 3459
- 6 Bae J.-Y, Lee H.-J, Youn S.-H, Kwon S.-H, Cho C.-W. Org. Lett. 2010; 12: 4352
- 7 Bandini M, Eichholzer A, Tragni M, Umani-Ronchi A. Angew. Chem. Int. Ed. 2008; 47: 3238
- 8 Bandini M, Bottoni A, Eichholzer A, Miscione GP, Stenta M. Chem. Eur. J. 2010; 16: 12462
- 9 Bordwell FG, Drucker GE, Fried HE. J. Org. Chem. 1981; 46: 632
- 10 Heaney H, Ley SV. J. Chem. Soc., Perkin Trans. 1 1973; 499
- 11 For an analogous observation on indoles see: Hong L, Sun W, Liu C, Wang L, Wang R. Chem. Eur. J. 2010; 16: 440
- 12a O’Donnell MJ. Acc. Chem. Res. 2004; 37: 506
- 12b Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
- 12c Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 13a Maciver EE, Thompson S, Smith MD. Angew. Chem. Int. Ed. 2009; 48: 9979
- 13b Maciver EE, Knipe PC, Cridland AP, Thompson AL, Smith MD. Chem. Sci. 2012; 3: 537
- 13c Armstrong RJ, Smith MD. Angew. Chem. Int. Ed. 2014; 53: 12822
- 14 Rabinovitz M, Cohen Y, Halpern M. Angew. Chem., Int. Ed. Engl. 1986; 25: 960
- 15a Cheng X, Vellalath S, Goddard R, List B. J. Am. Chem. Soc. 2008; 130: 15786
- 15b Rueping M, Antonchick AP, Sugiono E, Grenader K. Angew. Chem. Int. Ed. 2009; 48: 908
- 16a Berkessel A, Guixá M, Schmidt F, Neudörfl JM, Lex J. Chem. Eur. J. 2007; 13: 4483
- 16b Liu Y, Provencher BA, Bartelson KJ, Deng L. Chem. Sci. 2011; 2: 1301
- 17 Dolling UH, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
- 18 Representative Experimental Procedure for 5-Phenyl-5,6-dihydropyrrolo[1,2-c]quinazoline (2): A slurry of pyrroloaniline 1 (100 mg, 0.63 mmol), benzaldehyde (87 mg, 0.82 mmol) and oven-dried anhyd MgSO4 (380 mg, 3.16 mmol) in anhyd toluene (20 mL) was stirred at r.t. for 16 h and then filtered through a plug of Celite® washing with anhyd Et2O. The filtrate was concentrated under reduced pressure. The crude imine thus obtained was dissolved in toluene (6.3 mL) and N-benzylcinchoninium chloride (27 mg, 0.064 mmol) was added. The resulting stirred suspension was cooled to –15 °C and aq KOH (50% w/w, 0.35 mL, 6.3 mmol) precooled to –15 °C was added. The biphasic reaction mixture was rapidly stirred at –15 °C for 5 d. After this time, H2O was added and the solution was allowed to warm to r.t. The organic layer was separated and the aqueous layer was extracted three times with CH2Cl2. The combined organic extracts were dried over anhyd MgSO4, filtered and concentrated under reduced pressure. Purification via column chromatography eluting with Et2O–PE 40–60 (1:9) afforded 2 as a white solid (132 mg, 85%, 86:14 er); mp 96–99 °C (Et2O–PE 40–60); [α]D 20 +99 (c = 1.00, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.52–7.59 (m, 3 H), 7.44–7.49 (m, 3 H), 7.06 (td, J = 7.6, 1.4 Hz, 1 H), 6.93 (td, J = 7.6, 0.9 Hz, 1 H), 6.70 (d, J = 7.9 Hz, 1 H), 6.60 (dd, J = 3.6, 1.4 Hz, 1 H), 6.24 (t, J = 3.2 Hz, 1 H), 6.17 (dd, J = 2.5, 1.6 Hz, 1 H), 6.17 (s, 1 H), 4.32 (br s, 1 H, NH). 13C NMR (126 MHz, CDCl3): δ = 139.3, 138.4, 129.9, 129.0, 129.0, 128.3, 126.6, 122.5, 120.3, 118.2, 117.9, 114.9, 109.4, 103.2, 71.0. FTIR (neat): 3357 (br), 3059, 1612, 1586, 1487, 1459, 1435, 1231, 1156, 1111 cm–1. HRMS (ESI+): m/z calcd for C17H15N2: 247.1230; found: 247.1230.
- 19 Imine formation with magnesium sulfate resulted in a complex mixture of products. Using conditions recently reported by Ruano and Cid, the desired imine was obtained in sufficient purity to use crude in the phase-transfer cyclization. For imine formation using catalytic pyrrolidine, see: Morales S, Guijarro FG, García Ruano JL, Cid MB. J. Am. Chem. Soc. 2014; 136: 1082
- 20 X-ray data for compound 37 has been deposited at the Cambridge Crystallographic Data Centre (CCDC 982635).
- 21 Mąkosza M, Bialecka E. Tetrahedron Lett. 1977; 183
- 22a Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 18: 734
- 22b Baldwin JE, Thomas RC, Kruse LI, Silberman L. J. Org. Chem. 1977; 42: 3846
- 22c Johnston CP, Kothari A, Sergeieva T, Okovytyy SI, Jackson KE, Paton RS, Smith MD. Nature Chem. 2015; 7: 171
For selected examples of asymmetric C-functionalization, see:
For selected reviews of asymmetric phase-transfer catalysis, see:
For catalytic enantioselective synthesis of aminals, see:
For related observations on the importance of alcohols in phase-transfer catalyzed reactions, see: