Synlett 2016; 27(01): 6-10
DOI: 10.1055/s-0035-1560813
letter
© Georg Thieme Verlag Stuttgart · New York

Cation-Directed Enantioselective N-Functionalization of Pyrroles

Roly J. Armstrong
Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK   URL: http://msmith.chem.ox.ac.uk/   Email: martin.smith@chem.ox.ac.uk
,
Melissa D’Ascenzio
Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK   URL: http://msmith.chem.ox.ac.uk/   Email: martin.smith@chem.ox.ac.uk
,
Martin D. Smith*
Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK   URL: http://msmith.chem.ox.ac.uk/   Email: martin.smith@chem.ox.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 17 September 2015

Accepted after revision: 14 October 2015

Publication Date:
05 November 2015 (online)


Dedicated to Prof. Steven V. Ley on the occasion of his 70th birthday

Abstract

A catalytic enantioselective N-functionalization of pyrroles has been developed. Imines formed in situ via condensation underwent cation-directed cyclization with complete N-regioselectivity. The cyclized products were obtained with enantiomeric ratios up to 96:4 for aldimine substrates and up to 99:1 for trifluoromethyl ketimines. The reaction proceeds without an acidifying group on the pyrrole and offers a new approach to the generation of chiral nonracemic aminals.

Supporting Information

 
  • References and Notes

  • 2 Thirumalairajan S, Pearce BM, Thompson A. Chem. Commun. 2010; 46: 1797
  • 4 Hodous BL, Fu GC. J. Am. Chem. Soc. 2002; 124: 10006
  • 6 Bae J.-Y, Lee H.-J, Youn S.-H, Kwon S.-H, Cho C.-W. Org. Lett. 2010; 12: 4352
  • 7 Bandini M, Eichholzer A, Tragni M, Umani-Ronchi A. Angew. Chem. Int. Ed. 2008; 47: 3238
  • 8 Bandini M, Bottoni A, Eichholzer A, Miscione GP, Stenta M. Chem. Eur. J. 2010; 16: 12462
  • 9 Bordwell FG, Drucker GE, Fried HE. J. Org. Chem. 1981; 46: 632
  • 10 Heaney H, Ley SV. J. Chem. Soc., Perkin Trans. 1 1973; 499
  • 11 For an analogous observation on indoles see: Hong L, Sun W, Liu C, Wang L, Wang R. Chem. Eur. J. 2010; 16: 440
  • 14 Rabinovitz M, Cohen Y, Halpern M. Angew. Chem., Int. Ed. Engl. 1986; 25: 960
  • 17 Dolling UH, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
  • 18 Representative Experimental Procedure for 5-Phenyl-5,6-dihydropyrrolo[1,2-c]quinazoline (2): A slurry of pyrroloaniline 1 (100 mg, 0.63 mmol), benzaldehyde (87 mg, 0.82 mmol) and oven-dried anhyd MgSO4 (380 mg, 3.16 mmol) in anhyd toluene (20 mL) was stirred at r.t. for 16 h and then filtered through a plug of Celite® washing with anhyd Et2O. The filtrate was concentrated under reduced pressure. The crude imine thus obtained was dissolved in toluene (6.3 mL) and N-benzylcinchoninium chloride (27 mg, 0.064 mmol) was added. The resulting stirred suspension was cooled to –15 °C and aq KOH (50% w/w, 0.35 mL, 6.3 mmol) precooled to –15 °C was added. The biphasic reaction mixture was rapidly stirred at –15 °C for ­5 d. After this time, H2O was added and the solution was allowed to warm to r.t. The organic layer was separated and the aqueous layer was extracted three times with CH2Cl2. The combined organic extracts were dried over anhyd MgSO4, filtered and concentrated under reduced pressure. Purification via column chromatography eluting with Et2O–PE 40–60 (1:9) afforded 2 as a white solid (132 mg, 85%, 86:14 er); mp 96–99 °C (Et2O–PE 40–60); [α]D 20 +99 (c = 1.00, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.52–7.59 (m, 3 H), 7.44–7.49 (m, 3 H), 7.06 (td, J = 7.6, 1.4 Hz, 1 H), 6.93 (td, J = 7.6, 0.9 Hz, 1 H), 6.70 (d, J = 7.9 Hz, 1 H), 6.60 (dd, J = 3.6, 1.4 Hz, 1 H), 6.24 (t, J = 3.2 Hz, 1 H), 6.17 (dd, J = 2.5, 1.6 Hz, 1 H), 6.17 (s, 1 H), 4.32 (br s, 1 H, NH). 13C NMR (126 MHz, CDCl3): δ = 139.3, 138.4, 129.9, 129.0, 129.0, 128.3, 126.6, 122.5, 120.3, 118.2, 117.9, 114.9, 109.4, 103.2, 71.0. FTIR (neat): 3357 (br), 3059, 1612, 1586, 1487, 1459, 1435, 1231, 1156, 1111 cm–1. HRMS (ESI+): m/z calcd for C17H15N2: 247.1230; found: 247.1230.
  • 19 Imine formation with magnesium sulfate resulted in a complex mixture of products. Using conditions recently reported by Ruano and Cid, the desired imine was obtained in sufficient purity to use crude in the phase-transfer cyclization. For imine formation using catalytic pyrrolidine, see: Morales S, Guijarro FG, García Ruano JL, Cid MB. J. Am. Chem. Soc. 2014; 136: 1082
  • 20 X-ray data for compound 37 has been deposited at the Cambridge Crystallographic Data Centre (CCDC 982635).
  • 21 Mąkosza M, Bialecka E. Tetrahedron Lett. 1977; 183