Synlett 2016; 27(09): 1428-1432
DOI: 10.1055/s-0035-1561576
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Anastrephin via the Allylic Substitution for Quaternary Carbon Construction

Kyohei Wada
Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Email: ykobayas@bio.titech.ac.jp
,
Masahiro Sakai
Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Email: ykobayas@bio.titech.ac.jp
,
Hidehisa Kawashima
Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Email: ykobayas@bio.titech.ac.jp
,
Narihito Ogawa
Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Email: ykobayas@bio.titech.ac.jp
,
Yuichi Kobayashi*
Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan   Email: ykobayas@bio.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 02 January 2016

Accepted after revision: 02 February 2016

Publication Date:
29 February 2016 (online)


Abstract

Lactone-moiety-attached 2-cyclohexylideneethyl picolinate was prepared through the OH-directed epoxidation (98% ds) of (R)-3-methylcyclohex-2-en-1-ol (99% ee), Horner–Wadsworth–Emmons olefination, conversion to the allylic moiety, and epoxide ring opening with Et2AlCH2CO2 t-Bu. The allylic substitution of the picolinate with Me2CuMgBr·MgBr2 furnished a quaternary carbon center with 92% ds. Finally, the lactonization of the product, the tert-butyl ester of the seco acid, under acidic conditions, afforded (–)-anastrephin.

Supporting Information

 
  • References and Notes

    • 1a Rocca JR, Nation JL, Strekowski L, Battiste MA. J. Chem. Ecol. 1992; 18: 223
    • 1b Lu F, Teal PE. A. Arch. Insect Biochem. Physiol. 2001; 48: 144
    • 1c Teal PE. A, Meredith JA, Gomez-Simuta Y. Arch. Insect Biochem. Physiol. 1999; 42: 225
    • 1d Baker JD, Heath RR. J. Chem. Ecol. 1993; 19: 1511
    • 1e Robacker DC. J. Chem. Ecol. 1988; 14: 1715
    • 1f Stokes JB, Uebel EC, Warthen JD, Jacobson MJr, Flippen-Anderson JL, Gilardi R, Spishakoff LM, Wilzer KR. J. Agric. Food Chem. 1983; 31: 1162
    • 1g Walse SS, Alborn HT, Teal PE. A. Green Chem. Lett. Rev. 2008; 1: 205
    • 1h Strekowski L, Visnick M, Battiste MA. J. Org. Chem. 1986; 51: 4836
  • 2 Battiste MA, Strekowski L, Vanderbilt DP, Visnick M, King RW. Tetrahedron Lett. 1983; 24: 2611
    • 3a Mori K, Nakazono Y. Liebigs Ann. Chem. 1988; 167
    • 3b Tadano K, Isshiki Y, Minami M, Ogawa S. J. Org. Chem. 1993; 58: 6266
    • 3c Irie O, Shishido K. Chem. Lett. 1995; 53
    • 4a Battiste MA, Strekowski L, Coxon JM, Wydra RL, Harden DB. Tetrahedron Lett. 1991; 32: 5303
    • 4b Saito A, Matsushita H, Kaneko H. Chem. Lett. 1984; 729
    • 4c Battiste MA, Strekowski L, Vanderbilt DP, Visnick M, King RW. Tetrahedron Lett. 1983; 24: 2611
  • 5 Kaneko Y, Kiyotsuka Y, Acharya HP, Kobayashi Y. Chem. Commun. 2010; 46: 5482
    • 6a Feng C, Kobayashi Y. J. Org. Chem. 2013; 78: 3755
    • 6b Feng C, Kaneko Y, Kobayashi Y. Tetrahedron Lett. 2013; 54: 4629
    • 6c Ozaki T, Kobayashi Y. Org. Chem. Front. 2015; 2: 328
    • 6d Ozaki T, Kobayashi Y. Synlett 2015; 26: 1085
    • 6e Kiyotsuka Y, Kobayashi Y. J. Org. Chem. 2009; 74: 7489
    • 6f Kiyotsuka Y, Katayama Y, Acharya HP, Hyodo T, Kobayashi Y. J. Org. Chem. 2009; 74: 1939
    • 6g Kiyotsuka Y, Acharya HP, Katayama Y, Hyodo T, Kobayashi Y. Org. Lett. 2008; 10: 1719
    • 7a Kawashima H, Kaneko Y, Sakai M, Kobayashi Y. Chem. Eur. J. 2014; 20: 272
    • 7b Kawashima H, Sakai M, Kaneko Y, Kobayashi Y. Tetrahedron 2015; 71: 2387
  • 8 Ozaki T, Kobayashi Y. Synlett 2015; 26: 1085
  • 9 Visnick M, Strekowski L, Battiste MA. Synthesis 1983; 284
  • 11 Hansson M, Arvidsson PI, Lill SO. N, Ahlberg P. J. Chem. Soc., Perkin Trans. 2 2002; 763
  • 12 Holub N, Neidhöfer J, Blechert S. Org. Lett. 2005; 7: 1227
  • 13 Wu K.-M, Okamura WH. J. Org. Chem. 1990; 55: 4025
  • 14 Enantiomeric purity of 13 was calculated to be 95% ee based on 99% ee of 10 and 98% ds of 12.
  • 15 Strekowski L, Visnick M, Battiste MA. Synthesis 1983; 493
  • 16 Anastrephin (1) prepared from (E)-5 (95% ee): [α]D 21 –39 (c 0.37, hexane) and mp 91.5–93.0 °C. Compare ref. 3b [α]D 26 –45.1 (c 0.51, hexane) and mp 88.0–89.5 °C; ref. 3a [α]D 23.5 –50.4 (c 0.25, hexane) and mp 91.0–91.5 °C; ref. 1h [α]D +48.8 (hexane) and mp 94–95 °C for ent-1. Since the [α]D value of epianastrephin (2) is larger than 1 {[α]D 28 –72.5 (c 0.57, hexane)}, contamination of 2 in 1 might be a reason for the reported larger [α]D value of 1. The copy of the 1H NMR spectrum of 1 attached in their Supporting Information is contaminated with 2.3b
  • 17 This conformer is supported by 1H NMR analysis: Conformer C, J Ha–Hb = 1.6 Hz, J Hb–Hd = 0 Hz; conformer A, J Ha–Hc = J Hc–Hd = 0 Hz.
  • 18 Lit.3a 0.28% yield, 23 steps, 23% ds (46% ds and 50% ds in the two steps) from geraniol; lit.3b 0.16% yield, 31 steps, 33% ds (53% and 63% ds in the two steps) from glucose; lit.3c 0.89% yield, 27 steps, 47% ds (75% and 63% ds in the two steps) from geraniol.
  • 19 A solution of 5b (E/Z = 47:53, 284 mg, 0.76 mmol) in THF (2 mL) was added to a mixture of MeMgBr (0.97 M in THF, 2.60 mL, 2.52 mmol), CuBr·Me2S (235 mg, 1.14 mmol) and ZnI2 (392 mg, 1.23 mmol) in THF (1 mL) at –40 °C. The resulting mixture was warmed to r.t. and stirred overnight to afford olefin 6b (105 mg, 51%, 92% ds) after chromatographic purification. 1H NMR (400 MHz, CDCl3): δ = 1.00 (s, 3 H), 1.08 (s, 3 H), 1.27–1.35 (m, 1 H), 1.39–1.46 (m, 1 H), 1.45 (s, 9 H), 1.50–1.60 (m, 2 H), 1.73 (br s, 1 H), 1.77–1.86 (m, 2 H), 1.95 (dd, J = 6.0, 4.8 Hz, 1 H), 2.31 (dd, J = 16.4, 4.8 Hz, 1 H), 2.45 (dd, J = 16.4, 6.4 Hz, 1 H), 5.00 (dd, J = 17.6, 1.2 Hz, 1 H), 5.03 (dd, J = 11.2, 0.8 Hz, 1 H), 5.88 (ddd, J = 17.6, 11.2, 0.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.2 (–), 22.1 (+), 28.1 (+), 30.1 (+), 31.8 (–), 37.5 (–), 41.1 (–), 43.2 (–), 53.9 (+), 73.0 (–), 80.4 (–), 112.5 (–), 142.2 (+), 174.8 (–). The diastereoselectivity of 6b was determined by integration of the key signals in the 1H NMR [δ = 5.88 (ddd) for 6b and δ = 5.71 (dd) for the diastereomer].