Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(16): 2147-2152
DOI: 10.1055/s-0036-1588182
DOI: 10.1055/s-0036-1588182
letter
Rhodium(III)-Catalyzed Sequential Cleavage of Two C–H Bonds for the Synthesis of Polyarylated Naphthols
Funding from the Science Technology Department of Zhejiang Province (No. LQ15B020002) and NSFC (Nos. 21472165 and 21672186) is gratefully acknowledged.Further Information
Publication History
Received: 14 May 2017
Accepted after revision: 16 May 2017
Publication Date:
04 July 2017 (online)
![](https://www.thieme-connect.de/media/synlett/201716/lookinside/thumbnails/st-2017-w0180-l_10-1055_s-0036-1588182-1.jpg)
Abstract
A Rh(III)-catalyzed multiple C–H bond activation/cyclization of phenol derivatives with alkynes was developed. Polyaryl-substituted naphthol derivatives, potentially useful as organic optoelectronic materials, were obtained in moderate to good yields.
Key words
rhodium catalysis - C–H bond activation - alkynes - polyarylnaphthols - oxidative annulationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588182.
- Supporting Information
-
References and Notes
- 1a Watson MD. Fethtenkötter A. Müllen K. Chem. Rev. 2001; 101: 1267
- 1b Mitschke U. Bäuerle P. J. Mater. Chem. 2000; 10: 1471
- 1c Harvey RG. Polycyclic Aromatic Hydrocarbons . Wiley-VCH; Weinheim: 1997
- 2 Anthony JE. Angew. Chem. Int. Ed. 2008; 47 (03) 452
- 3a Metal-Catalyzed Cross-Coupling Reactions . Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998
- 3b Ritleng V. Sirlin C. Pfeffer M. Chem. Rev. 2002; 102: 1731
- 3c Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
- 4a Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 4b Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 4c Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
- 4d Jazzar R. Hitce J. Renaudat A. Sofack-Kreutzer J. Baudoin O. Chem. Eur. J. 2010; 16: 2654
- 4e Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 4f Magano J. Dunetz JR. Chem. Rev. 2011; 111: 2177 ; see also Ref. 3 (c)
- 5a Flynn AB. Ogilvie WW. Chem. Rev. 2007; 107: 4698
- 5b Yasukawa T. Satoh T. Miura M. Nomura M. J. Am. Chem. Soc. 2002; 124: 12680
- 5c Ueura K. Satoh T. Miura M. J. Org. Chem. 2007; 72: 5362
- 5d Yamashita M. Hirano K. Satoh T. Miura M. Org. Lett. 2009; 11: 2337
- 5e Uto T. Shimizu M. Ueura K. Tsurugi H. Satoh T. Miura M. J. Org. Chem. 2008; 73: 298
- 5f Yamashita M. Horiguchi H. Hirano K. Satoh T. Miura M. J. Org. Chem. 2009; 74: 7481
- 5g Wu Y.-T. Huang K.-H. Shin T.-C. Wu T.-C. Chem. Eur. J. 2008; 14: 6697
- 5h Ilies L. Matsumoto A. Kobayashi M. Yoshikai N. Nakamura E. Synlett 2012; 23: 2381
- 5i Le Bras J. Muzart J. Synthesis 2014; 46: 1555
- 5j Pham MV. Cramer N. Angew. Chem. Int. Ed. 2014; 53: 3484
- 6a Stuart DR. Bertrand-Laperle M. Burgess KM. N. Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 6b Guimond N. Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
- 7a Ueura K. Satoh T. Miura M. Org. Lett. 2007; 9: 1407
- 7b Umeda N. Tsurugi H. Satoh T. Miura M. Angew. Chem. Int. Ed. 2008; 47: 4019
- 7c Morimoto K. Hirano K. Satoh T. Miura M. Org. Lett. 2010; 12: 2068
- 7d Hashimoto Y. Hirano K. Satoh T. Kakiuchi F. Miura M. Org. Lett. 2012; 14: 2058
- 7e Umeda N. Hirano K. Satoh T. Shibata N. Sato H. Miura M. J. Org. Chem. 2011; 76: 13
- 8a Patureau FW. Glorius F. J. Am. Chem. Soc. 2010; 132: 9982
- 8b Rakshit S. Patureau FW. Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
- 8c Patureau FW. Besset T. Kuhl N. Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
- 9a Li Y. Li B.-J. Wang W.-H. Huang W.-P. Zhang X.-S. Chen K. Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 2115
- 9b Li B.-J. Wang H.-Y. Zhu Q.-L. Shi Z.-J. Angew. Chem. Int. Ed. 2012; 51: 3948
- 9c Liu B. Hu F. Shi B.-F. Adv. Synth. Catal. 2014; 356: 2688
- 9d Qian Z.-C. Zhou J. Li B. Hu F. Shi B.-F. Org. Biomol. Chem. 2014; 12: 3594
- 9e Qian Z.-C. Zhou J. Li B. Shi B.-F. Synlett 2014; 25: 1036
- 10a Wang F. Song G. Li X. Org. Lett. 2010; 12: 5430
- 10b Wei X. Zhao M. Du Z. Li X. Org. Lett. 2011; 13: 4636
- 10c Chen J. Song G. Pan C.-L. Li X. Org. Lett. 2010; 12: 5426
- 10d Shi Z. Tang C. Jiao N. Adv. Synth. Catal. 2012; 354: 2695
- 10e Ackermann L. Lygin AV. Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
- 10f Wu J. Cui X. Mi X. Li Y. Wu Y. Chem. Commun. (Cambridge) 2010; 46: 6771
- 10g Song G. Gong X. Li X. J. Org. Chem. 2011; 76: 7583
- 10h Zheng J. You S.-L. Chem. Commun. (Cambridge) 2014; 50: 8204
- 10i Martínez ÁM. Echavarren J. Alonso I. Rodríguez N. Gómez Arrayás R. Carretero JC. Chem. Sci. 2015; 6: 5802
- 11 Gong T.-J. Xiao B. Liu Z.-J. Wan J. Xu J. Luo D.-F. Fu Y. Liu L. Org. Lett. 2011; 13: 3235
- 12 Feng C. Loh T.-P. Chem. Commun. 2011; 47: 10458
- 13a Reddy MC. Jeganmohan M. Chem. Commun. 2013; 49: 481
- 13b Li B. Ma J. Liang Y. Wang N. Xu S. Song H. Wang B. Eur. J. Org. Chem. 2013; 1950
- 14 Polyarylaryl Dimethylcarbamates 4; General Procedure A 25 mL sealed tube equipped with a magnetic stirrer bar was charged with [Cp*RhCl2]2 (3 mg, 0.005 mmol), AgSbF6 (7 mg, 0.02 mmol), Cu(OAc)2 (80 mg, 0.4 mol), carbamate 1 (0.2 mmol), alkyne 2 (0.5 mmol), and PhF (2.0 mL). The tube was then sealed and heated at 110 °C with stirring for 12 h. After cooling, the mixture was filtered through a plug of Celite, which was then washed with EtOAc (3 × 20 mL). The combined organic phases were washed with brine (2 × 20 mL), dried (Na2SO4), filtered, and concentrated. The residue was purified by flash column chromatography (silica gel, EtOAc–PE). 1,2,3,4-Tetraphenyl-9-anthryl Dimethylcarbamate (4aa) Yellow solid; yield: 86 mg (76%); mp 227–229 °C. IR (KBr): 1727, 1160 cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 2.47 (s, 3 H), 2.71 (s, 3 H), 6.67–6.69 (m, 1 H), 6.77–6.84 (m, 9 H), 7.00–7.03 (m, 1 H), 7.07–7.11 (m, 1 H), 7.15–7.17 (m, 2 H), 7.23 (m, 2 H), 7.27–7.43 (m, 6 H), 7.77–7.80 (m, 2 H), 8.12 (s, 1 H). 13C NMR (100 MHz, CDCl3, TMS): δ = 36.1, 36.4, 121.4, 123.7, 124.7, 125.0, 125.3, 125.5 (2C), 125.8, 126.2, 126.4, 126.6, 127.6, 127.7, 128.6, 129.8, 131.1, 131.2, 131.4, 131.7, 132.1, 134.8, 138.4, 138.6, 139.9, 140.4, 140.6, 141.1, 142.5, 143.5, 154.2. HRMS (EI): m/z [M+] calcd for C41H31NO2: 569.2355; found: 569.2358.
For selected reviews, see:
For selected reviews, see:
For selected general reviews on transition-metal-catalyzed C–H activation and its synthetic applications, see: