Subscribe to RSS
DOI: 10.1055/s-0036-1588499
Metal-Free Generation of Phosphorus-Centered Radicals for the Synthesis of Phosphorus-Based Heterocycles: A Personal Account
The authors thank the CNRS, Normandie Université and Labex Synorg (ANR-11-LABX-0029) for financial support. V.Q. is grateful to the ‘Ministère de l’Enseignement supérieur et de la Recherche’ for a fellowship.Publication History
Received: 29 May 2017
Accepted after revision: 26 June 2017
Publication Date:
13 July 2017 (online)
Dedicated to Prof. Herbert Mayr on the occasion of his 70th birthday
Abstract
This short review describes our recent efforts to generate phosphorus-based radicals under metal-free conditions and their use as key intermediates for the synthesis of phosphorus-based heterocycles. In this regard, the synthesis of benzo[b]phosphole oxides and 6-phosphorylated phenanthridines will be reported. While the synthesis of the former lies in the use of photoredox catalysis, the latter have been obtained through the use of an electron donor–acceptor complex from the combination of diphenyliodonium ion with triethylamine. Mechanistic aspects of both reaction types are discussed based on detailed mechanistic studies including electron paramagnetic resonance, UV–vis spectroscopic, NMR and steady-state photolysis experiments.
1 Introduction
2 Photoredox Catalysis for the Generation of Phosphinoyl Radicals
3 Generation of Phosphinoyl Radicals through the Formation of EDA Complexes
4 Conclusions
-
References
- 1a Redmore D. Chem. Rev. 1971; 71: 315
- 1b Quin LD. A Guide to Organophosphorus Chemistry . Wiley Interscience; New York: 2000
- 1c Baumgartner T. Reau R. Chem. Rev. 2006; 106: 4681
- 1d Queffelec C. Petit M. Janvier P. Knight DA. Bujoli B. Chem. Rev. 2012; 112: 3777
- 1e Montchamp J.-L. Acc. Chem. Res. 2014; 47: 77
- 1f Van der Jeught S. Stevens CV. Chem. Rev. 2009; 109: 2672
- 1g Tang W. Zhang X. Chem. Rev. 2003; 103: 3029
- 2a Yang J. Chen T. Han LB. J. Am. Chem. Soc. 2015; 137: 1782
- 2b Zhang JS. Chen T. Yang J. Han LB. Chem. Commun. 2015; 51: 7540
- 2c Zhao YL. Wu GJ. Han FS. Chem. Commun. 2012; 48: 5868
- 2d Petrakis KS. Nagabhushan TL. J. Am. Chem. Soc. 1987; 109: 2831
- 2e Hu G. Chen W. Fu T. Peng Z. Qiao H. Gao Y. Zhao Y. Org. Lett. 2013; 15: 5362
- 2f Fu T. Qiao H. Peng Z. Hu G. Wu X. Gao Y. Zhao Y. Org. Biomol. Chem. 2014; 12: 2895
- 3a Leca D. Fensterbank L. Lacôte E. Malacria M. Chem. Soc. Rev. 2005; 34: 858
- 3b Pan X.-Q. Zou J.-P. Yi W.-B. Zhang W. Tetrahedron 2015; 71: 7481
- 4a Sluggett GW. Tuorro C. George MW. Koptyug IV. Turro NJ. J. Am. Chem. Soc. 1995; 117: 5148
- 4b Sluggett GW. Macgary PF. Koptyug IV. Turro NJ. J. Am. Chem. Soc. 1996; 118: 7367
- 4c Marque S. Tordo P. Top. Curr. Chem. 2005; 250: 43
- 5a Zhang C. Li Z. Zhu L. Yu L. Wang Z. Li C. J. Am. Chem. Soc. 2013; 135: 14082
- 5b Zhou Z.-Z. Jin D.-P. Li L.-H. He Y.-T. Zhou P.-X. Yan X.-B. Liu X.-Y. Liang Y.-M. Org. Lett. 2014; 16: 5616
- 5c Hua H.-L. Zhang B.-S. He Y.-T. Qiu Y.-F. Wu X.-X. Xu P.-F. Liang Y.-M. Org. Lett. 2016; 18: 216
- 5d Li Y.-M. Sun M. Wang H.-L. Tian Q.-P. Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
- 5e Kong W. Fuentes N. García-Domínguez A. Merino E. Nevado C. Angew. Chem. Int. Ed. 2015; 54: 2487
- 6a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 6b Hari DP. König B. Chem. Commun. 2014; 50: 6688
- 6c Schultz DM. Yoon TP. Science 2014; 343: 985
- 6d Staveness D. Bosque I. Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
- 6e Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 6f Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
- 6g Hu X.-Q. Chen J.-R. Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 1960
- 7a Luo K. Yang W.-C. Wu L. Asian J. Org. Chem. 2017; 6: 350
- 7b Rueping M. Zhu S. Koenigs RM. Chem. Commun. 2011; 47: 8679
- 7c Yoo WJ. Kobayashi S. Green Chem. 2014; 16: 2438
- 7d Yoo WJ. Kobayashi S. Green Chem. 2013; 15: 1844
- 7e Xuan J. Zeng TT. Chen JR. Lu LQ. Xiao WJ. Chem. Eur. J. 2015; 21: 4962
- 7f Luo K. Chen Y.-Z. Yang W.-C. Zhu J. Wu L. Org. Lett. 2016; 18: 452
- 8 Fouassier J.-P. Lalevée J. Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency . Wiley-VCH; Weinheim: 2012
- 9a Neumann M. Fuldner S. König B. Zeitler K. Angew. Chem. Int. Ed. 2011; 50: 951
- 9b Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958
- 9c Majek M. Filace F. Jacobi von Wangelin A. Beilstein J. Org. Chem. 2014; 10: 981
- 10a Matano Y. Imahori H. Org. Biomol. Chem. 2009; 7: 1258
- 10b Stolar M. Baumgartner T. Chem. Asian J. 2014; 9: 1212
- 10c Hissler M. Dyer PW. Reau R. Coord. Chem. Rev. 2003; 244: 1
- 10d Baumgartner T. Acc. Chem. Res. 2014; 47: 1613
- 10e Shameem MA. Orthaber A. Chem. Eur. J. 2016; 22: 10718
- 10f Tsuji H. Sato K. Ilies L. Itoh Y. Sato Y. Nakamura E. Org. Lett. 2008; 10: 2263
- 10g Tsuji H. Sato K. Sato Y. Nakamura E. J. Mater. Chem. 2009; 19: 3364
- 10h Tsuji H. Sato K. Sato Y. Nakamura E. Chem. Asian J. 2010; 5: 1294
- 11a Sanji T. Shiraishi K. Kashiwabara T. Tanaka M. Org. Lett. 2008; 10: 2689
- 11b Fukazawa A. Ichihashi Y. Kosaka Y. Yamaguchi S. Chem. Asian J. 2009; 4: 1729
- 11c Yamaguchi E. Wang CG. Fukazawa A. Taki M. Sato Y. Sasaki T. Ueda M. Sasaki N. Higashiyama T. Yamaguchi S. Angew. Chem. Int. Ed. 2015; 54: 4539
- 11d Yamaguchi E. Fukazawa A. Kosaka Y. Yokogawa D. Irle S. Yamaguchi S. Bull. Chem. Soc. Jpn. 2015; 88: 1545
- 11e Xu Y. Wang Z. Gan Z. Xi Q. Duan Z. Mathey F. Org. Lett. 2015; 17: 1732
- 11f Zhou Y. Gan Z. Su B. Li J. Duan Z. Mathey F. Org. Lett. 2015; 17: 5722
- 11g Hu G. Zhang Y. Su J. Li Z. Gao Y. Zhao Y. Org. Biomol. Chem. 2015; 13: 8221
- 11h Zhang P. Gao Y. Zhang L. Li Z. Liu Y. Tang G. Zhao Y. Adv. Synth. Catal. 2016; 358: 138
- 11i Ma D. Chen W. Hu G. Zhang Y. Gao Y. Yin Y. Zhao Y. Green Chem. 2016; 18: 3522
- 11j Wu B. Santra M. Yoshikai N. Angew. Chem. Int. Ed. 2014; 53: 7543
- 11k Wu B. Chopra R. Yoshikai N. Org. Lett. 2015; 17: 5666
- 12a Chen YR. Duan WL. J. Am. Chem. Soc. 2013; 135: 16754
- 12b Unoh Y. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2013; 52: 12975
- 13 Ma W. Ackermann L. Synthesis 2014; 46: 2297
- 14 For a review on radical aryl-migration reactions, see: Chen Z.-M. Zhang X.-M. Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
- 15a Willner I. Eichen Y. Rabinovitz M. Hoffman R. Cohen S. J. Am. Chem. Soc. 1992; 114: 637
- 15b Willner I. Marx S. Eichen Y. Angew. Chem. Int. Ed. 1992; 31: 1243
- 16 Quint V. Morlet-Savary F. Lohier J.-F. Lalevée J. Gaumont A.-C. Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
- 17 Jenkins CA. Murphy DM. Rowlands CC. Egerton TA. J. Chem. Soc., Perkin Trans. 2 1997; 2479
- 18a Morlet-Savary F. Klee JE. Pfefferkon F. Fouassier JP. Lalevée J. Macromol. Chem. Phys. 2015; 216: 2161
- 18b Lalevée J. Morlet-Savary F. Tehfe MA. Graff B. Fouassier JP. Macromolecules 2012; 45: 5032
- 19 For the sake of clarity, we have presented only the reaction mechanism of the photocatalyzed reaction of diphenylphosphine oxide (3a) with diphenylacetylene (4a).
- 20 Pitre SP. McTiernan ChD. Scaiano JC. Acc. Chem. Res. 2016; 49: 1320
- 21a Lima CG. S. de M Lima T. Duarte M. Jurberg ID. Paixão MW. ACS Catal. 2016; 6: 1389
- 21b Arceo E. Jurberg ID. Álvarez-Fernández A. Melchiorre P. Nat. Chem. 2013; 5: 750
- 21c Nappi M. Bergonzini G. Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 4921
- 21d Kandukuri SR. Bahamonde A. Chatterjee I. Jurberg ID. Escudero-Adan EC. Melchiorre P. Angew. Chem. Int. Ed. 2015; 54: 1485
- 22a Olofsson B. Top. Curr. Chem. 2016; 373: 135
- 22b Merritt EA. Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 23a Phipps RJ. Grimster NP. Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
- 23b Phipps RJ. Gaunt MJ. Science 2009; 323: 1593
- 23c Phipps RJ. McMurray L. Ritter S. Duong HA. Gaunt MJ. J. Am. Chem. Soc. 2012; 134: 10773
- 24 Tobisu M. Furukawa T. Chatani N. Chem. Lett. 2013; 42: 1203
- 25a Zhang B. Daniliuc CG. Studer A. Org. Lett. 2014; 16: 250
- 25b Cao J.-J. Zhu T.-H. Gu Z.-Y. Hao W.-J. Wang S.-Y. Ji S.-J. Tetrahedron 2014; 70: 6985
- 26 Li Y. Qiu G. Ding Q. Wu J. Tetrahedron 2014; 70: 4652
- 27 Li C.-X. Tu D.-S. Yao R. Yan H. Lu C.-S. Org. Lett. 2016; 18: 4928
- 28 Noël-Duchesneau L. Lagadic E. Morlet-Savary F. Lohier JF. Chataigner I. Breugst M. Lalevée J. Gaumont AC. Lakhdar S. Org. Lett. 2016; 18: 5900
- 29 Garra P. Morlet-Savary F. Dietlin C. Fouassier JP. Laleveé J. Macromolecules 2016; 49: 9371
For selected books and reviews, see:
For selected examples, see:
For selected reviews on phosphorus-centered radical reactions, see:
For a review, see:
For recent reviews on photoredox catalysis, see:
For an excellent review on photoredox catalysis in organophosphorus chemistry, see:
For selected examples of the use of electron donor–acceptor complexes in organic synthesis, see:
For excellent reviews on the use of diaryliodonium salts in organic synthesis, see:
For selected examples, see:
A catalytic version of this reaction has recently been accomplished by using AgOAc (20 mol%) with PhI(OAc)2 (3.0 equiv) at 100 °C; see: