Subscribe to RSS
DOI: 10.1055/s-0036-1588514
Iridium-Catalyzed Asymmetric Umpolung Allylation of N-Fluorenyl Imines to Prepare 1,4-Disubstituted Homoallylic Amines
Financial support of this work comes from the Youth 1000 Talent Plan Program, the National Natural Science Foundation of China (Nos. 21602145, 81573290, U1603123), and West China Hospital, SCU (start-up funding).Publication History
Received: 12 June 2017
Accepted after revision: 27 June 2017
Publication Date:
08 August 2017 (online)
Abstract
The discovery and development of an Ir-catalyzed asymmetric umpolung allylation of imines is discussed here. This method produces 1,4-disubstituted homoallylic amines, a class of compounds that are difficult to access by conventional methods. This reaction proceeds through a sequence involving an allylation and a 2-aza-Cope rearrangement event. The unique mechanistic feature of this reaction could be the reason for its broad substrate scope. The products of this reaction are useful intermediates for various bioactive and natural products. Besides its immediate synthetic utility, we expect this transformation to inspire the development of other umpolung functionalizations of imines and Ir-catalyzed asymmetric allylic substitution (AAS) reactions.
1 Introduction
2 Reaction Discovery
3 Substrate Scope
4 Conclusion
-
References
- 1a Helmchen G. Dahnz A. Dübon P. Schelwies M. Weihofen R. Chem. Commun. 2007; 675
- 1b Helmchen G. In Iridium Complexes in Organic Synthesis . Oro LA. Claver C. Wiley-VCH; Weinheim, Germany: 2009: 211
- 1c Hartwig JF. Stanley LM. Acc. Chem. Res. 2010; 43: 1461
- 1d Hartwig JF. Pouy MJ. Top. Organomet. Chem. 2011; 34: 169
- 1e Liu W.-B. Xia J.-B. You S.-L. Top. Organomet. Chem. 2012; 38: 155
- 1f Tosatti P. Nelson A. Marsden SP. Org. Biomol. Chem. 2012; 10: 3147
- 1g Zhan M. Li R.-Z. Mou Z.-D. Cao C.-G. Liu J. Chen Y.-W. Niu D. ACS Catal. 2016; 6: 3381
- 1h Huang L. Dai L.-X. You S.-L. J. Am. Chem. Soc. 2016; 138: 5793
- 1i Ye K.-Y. Cheng Q. Zhuo C.-X. You S.-L. Angew. Chem. Int. Ed. 2016; 55: 8113
- 1j Jiang X. Chen W. Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 5819
- 1k Liu W.-B. Reeves CM. Virgil SC. Stoltz BM. J. Am. Chem. Soc. 2013; 135: 10626
- 1l Liu W.-B. Reeves CM. Stoltz BM. J. Am. Chem. Soc. 2013; 135: 17298
- 2 Takeuchi R. Kashio M. Angew. Chem. Int. Ed. Engl. 1997; 36: 263
- 3 Janssen JP. Helmchen G. Tetrahedron Lett. 1997; 38: 8025
- 4a Chen G. Deng Y. Gong L.-Z. Mi A.-Q. Cui X. Jiang Y.-Z. Choi MC. K. Chan AS. C. Tetrahedron: Asymmetry 2001; 12: 1567
- 4b Tao Z.-L. Zhang W.-Q. Chen D.-F. Adele A. Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 9255
- 4c Nakoji M. Kanayama T. Okino T. Takemoto Y. Org. Lett. 2001; 3: 3329
- 4d Mukherjee S. List B. J. Am. Chem. Soc. 2007; 129: 11336
- 4e Jiang G.-X. List B. Angew. Chem. Int. Ed. 2011; 50: 9471
- 4f Chen D.-F. Han Z.-Y. Zhou X.-L. Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
- 4g Yang Z.-P. Zhang W. You S.-L. J. Org. Chem. 2014; 79: 7785 ; and references therein
- 5a Krautwald S. Sarlah D. Schafroth MA. Carreira EM. Science 2013; 340: 1065
- 5b Krautwald S. Carreira EM. J. Am. Chem. Soc. 2017; 139: 5627
- 6a Liu W.-B. He H. Dai L.-X. You S.-L. Org. Lett. 2008; 10: 1815
- 6b Wu Q.-F. Zheng C. You S.-L. Angew. Chem. Int. Ed. 2012; 51: 1680
- 6c Zhuo C.-X. Liu W.-B. Wu Q.-F. You S.-L. Chem. Sci. 2012; 3: 205
- 6d Wu Q.-F. Liu W.-B. Zhuo C.-X. Rong Z.-Q. Ye K.-Y. You S.-L. Angew. Chem. Int. Ed. 2011; 50: 4455
- 6e Cheng Q. Wang Y. You S.-L. Angew. Chem. Int. Ed. 2016; 55: 3496
- 6f Yang Z.-P. Wu Q.-F. You S.-L. Angew. Chem. Int. Ed. 2014; 53: 6986
- 6g Yang Z.-P. Wu Q.-F. Shao W. You S.-L. J. Am. Chem. Soc. 2015; 137: 15899
- 7a Zheng C. You S.-L. Chem 2016; 1: 830
- 7b Zhuo C.-X. Zhang W. You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 7c Zhuo C.-X. Zheng C. You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 7d Wu W.-T. Zhang L. You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 7e Liang X.-W. Zheng C. You S.-L. Chem. Eur. J. 2016; 22: 11918
- 7f Zheng C. Zhuo C.-X. You S.-L. J. Am. Chem. Soc. 2014; 136: 16251
- 7g Xu R.-Q. Gu Q. Wu W.-T. Zhao Z.-A. You S.-L. J. Am. Chem. Soc. 2014; 136: 15469
- 7h Wang S.-G. Yin Q. Zhuo C.-X. You S.-L. Angew. Chem. Int. Ed. 2015; 54: 647
- 7i Liu C. Yi J.-C. Zheng Z.-B. Tang Y. Dai L.-X. You S.-L. Angew. Chem. Int. Ed. 2016; 55: 751
- 8a Liang X. Jiang S.-Z. Wei K. Yang Y.-R. J. Am. Chem. Soc. 2016; 138: 2560
- 8b Jiang S.-Z. Zeng X.-Y. Liang X. Lei T. Wei K. Yang Y.-R. Angew. Chem. Int. Ed. 2016; 55: 4044
- 9 Kiener CA. Shu C. Incarvito C. Hartwig JF. J. Am. Chem. Soc. 2003; 125: 14272
- 10a Liu W.-B. He H. Dai L.-X. You S.-L. Synthesis 2009; 2076
- 10b Liu W.-B. Zheng C. Zhuo C.-X. Dai L.-X. You S.-L. J. Am. Chem. Soc. 2012; 134: 4812
- 11a Defieber C. Ariger MA. Moriel P. Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139
- 11b Roggen M. Carreira EM. J. Am. Chem. Soc. 2010; 132: 11917
- 12 Rössler SL. Krautwald S. Carreira EM. J. Am. Chem. Soc. 2017; 139: 3603
- 13 Liu J. Cao C.-G. Sun H.-B. Zhang X. Niu D. J. Am. Chem. Soc. 2016; 138: 13103
- 14 Seebach D. Angew. Chem. Int. Ed. Engl. 1979; 18: 239
- 15a Burger EC. Tunge JA. J. Am. Chem. Soc. 2006; 128: 10002
- 15b Yeagley AA. Chruma JJ. Org. Lett. 2007; 9: 2879
- 15c Fields WH. Chruma JJ. Org. Lett. 2010; 12: 316
- 15d Li Z. Jiang Y.-Y. Yeagley AA. Bour JP. Liu L. Chruma JJ. Fu Y. Chem. Eur. J. 2012; 18: 14527
- 15e Qian X. Ji P. He C. Zirimwabagabo J. Archibald MM. Yeagley AA. Chruma JJ. Org. Lett. 2014; 16: 5228
- 15f Tang S. Park JY. Yeagley AA. Sabat M. Chruma JJ. Org. Lett. 2015; 17: 2042
- 15g Niwa T. Yorimitsu H. Oshima K. Org. Lett. 2008; 10: 4689
- 15h Niwa T. Suehiro T. Yorimitsu H. Oshima K. Tetrahedron 2009; 65: 5125
- 15i Chen Y.-J. Kazutuka S. Yamashita Y. Kobayashi S. J. Am. Chem. Soc. 2010; 132: 3244
- 15j Matsumoto M. Harada M. Yamashita Y. Kobayashi S. Chem. Commun. 2014; 13041
- 15k Li M. Yücel B. Adrio J. Bellomo A. Walsh PJ. Chem. Sci. 2014; 5: 2383
- 15l Li M. Berritt S. Walsh PJ. Org. Lett. 2014; 16: 4312
- 15m Li M. González-Esguevillas M. Berritt S. Yang X. Bellomo A. Walsh PJ. Angew. Chem. Int. Ed. 2016; 55: 2825
- 15n Liu X. Gao A. Ding L. Xu J. Zhao B. Org. Lett. 2014; 16: 2118
- 15o Fernández-Salas JA. Marelli E. Nolan SP. Chem. Sci. 2015; 6: 4973
- 16a Wu Y. Hu L. Li Z. Deng L. Nature 2015; 523: 445
- 16b Zhu Y. Buchwald SL. J. Am. Chem. Soc. 2014; 136: 4500
- 16c Chen P. Yue Z. Zhang J. Lv X. Wang L. Zhang J. Angew. Chem. Int. Ed. 2016; 55: 13316
- 16d For a related reaction, see: Li X. Su J. Liu Z. Zhu Y. Dong Z. Qiu S. Wang J. Lin L. Shen Z. Yan W. Wang K. Wang R. Org. Lett. 2016; 18: 956
- 17a Tu H.-F. Zheng C. Xu R.-Q. Liu X.-J. You S.-L. Angew. Chem. Int. Ed. 2017; 56: 3237
- 17b Shen D. Chen Q. Yan P. Zeng X. Zhong G. Angew. Chem. Int. Ed. 2017; 56: 3242
- 18a Horowitz RM. Geissman TA. J. Am. Chem. Soc. 1950; 72: 1518
- 18b Sugiura M. Mori C. Kobayashi S. J. Am. Chem. Soc. 2006; 128: 11038
- 18c Rueping M. Antonchick AP. Angew. Chem. Int. Ed. 2008; 47: 10090
- 18d Ren H. Wulff WD. J. Am. Chem. Soc. 2011; 133: 5656
- 18e Ren H. Wulff WD. Org. Lett. 2013; 15: 242
- 18f Goodman CG. Johnson JS. J. Am. Chem. Soc. 2015; 137: 14574
- 19 Jones AD. Knight DW. Hibbs DE. J. Chem. Soc., Perkin Trans. 1 2001; 1182
For excellent reviews in this topic, see:
For recent examples, see:
For other example, see:
For excellent reviews in CADA chemistry, see:
for selected examples of CADA chemistry that are not initiated by Ircatalyzed AAS reaction, see