Subscribe to RSS
DOI: 10.1055/s-0036-1588772
Transition-Metal-Free Boryl Substitution Using Silylboranes and Alkoxy Bases
Publication History
Received: 19 February 2017
Accepted after revision: 09 March 2017
Publication Date:
26 April 2017 (online)
Abstract
Silylboranes are used as borylation reagents for organohalides in the presence of alkoxy bases without transition-metal catalysts. PhMe2Si–B(pin) reacts with a variety of aryl, alkenyl, and alkyl halides, including sterically hindered examples, to provide the corresponding organoboronates in good yields with high borylation/silylation ratios, showing good functional group compatibility. Halogenophilic attack of a silyl nucleophile on organohalides, and subsequent nucleophilic attack on the boron electrophile are identified to be crucial, based on the results of extensive theoretical and experimental studies. This borylation reaction is further applied to the first direct dimesitylboryl (BMes2) substitution of aryl halides using Ph2MeSi–BMes2 and Na(O-t-Bu), affording aryldimesitylboranes, which are regarded as an important class of compounds for organic materials.
1 Introduction
2 Boryl Substitution of Organohalides with PhMe2Si–B(pin)/Alkoxy Bases
3 Mechanistic Investigations
4 DFT Mechanistic Studies Using an Artificial Force Induced Reaction (AFIR) Method
5 Dimesitylboryl Substitution of Aryl Halides with Ph2MeSi–BMes2/Na(O-t-Bu)
6 Conclusion
-
References
- 1 Current address: Department of Chemistry, Graduate School of Science, Kyushu University, Motooka 477, Nishi-ku, Fukuoka 819-0395, Japan.
- 2a Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. 2nd ed.; Hall DG. Wiley-VCH; Weinheim: 2011
- 2b Miyaura N. Bull. Chem. Soc. Jpn. 2008; 81: 1535
- 2c Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
- 3a Brown HC. Srebnik M. Cole TE. Organometallics 1986; 5: 2300
- 3b Brown HC. Cole TE. Organometallics 1983; 2: 1316
- 3c Pintaric C. Olivero S. Gimbert Y. Chavant PY. Duñach E. J. Am. Chem. Soc. 2010; 132: 11825
- 4a Ishiyama T. Murata M. Miyaura N. J. Org. Chem. 1995; 60: 7508
- 4b Murata M. Oyama T. Watanabe S. Masuda Y. J. Org. Chem. 2000; 65: 164
- 4c Ishiyama T. Ishida K. Miyaura N. Tetrahedron 2001; 57: 9813
- 4d Fürstner A. Seidel G. Org. Lett. 2002; 4: 541
- 4e Murata M. Sambommatsu T. Watanabe S. Masuda Y. Synlett 2006; 1867
- 4f Tang W. Keshipeddy S. Zhang Y. Wei X. Savoie J. Patel ND. Yee NK. Senanayake CH. Org. Lett. 2011; 13: 1366
- 4g Kawamorita S. Ohmiya H. Iwai T. Sawamura M. Angew. Chem. Int. Ed. 2011; 50: 8363
- 4h For Cu-catalyzed reactions see: Kleeberg C. Dang L. Lin Z. Marder TB. Angew. Chem. Int. Ed. 2009; 48: 5350
- 4i Morgan AB. Jurs JL. Tour JM. J. Appl. Polym. Sci. 2000; 76: 1257
- 4j Rosen BM. Huang C. Percec V. Org. Lett. 2008; 10: 2597
- 4k For a review, see: Chow WK. Yuen OY. Choy PY. So CM. Lau CP. Wong WT. Kwong FY. RSC Adv. 2013; 3: 12518
- 5a Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
- 5b Cho J.-Y. Iverson CN. Smith III. MR. J. Am. Chem. Soc. 2000; 122: 12868
- 5c Shimada S. Batsanov AS. Howard JA. K. Marder TB. Angew. Chem. Int. Ed. 2001; 40: 2168
- 5d Ishiyama T. Takagi J. Ishida K. Miyaura N. Anastasi NR. Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
- 6a Rosso VW. Lust DA. Bernot PJ. Grosso JA. Modi SP. Rusowicz A. Sedergran TC. Simpson JH. Srivastava SK. Humora MJ. Anderson NG. Org. Process Res. Dev. 1997; 1: 311
- 6b Garrett CE. Prasad K. Adv. Synth. Catal. 2004; 346: 889
- 6c Magano J. Dunetz JR. Chem. Rev. 2011; 111: 2177
- 7a Bose SK. Fucke K. Liu L. Steel PG. Marder TB. Angew. Chem. Int. Ed. 2014; 53: 1799
- 7b Bose SK. Marder TB. Org. Lett. 2014; 16: 4562
- 7c Nagashima Y. Takita R. Yoshida K. Hirano K. Uchiyama M. J. Am. Chem. Soc. 2013; 135: 18730
- 7d For C–H borylation reactions using Cu–Fe and Zn–Fe heterobimetallic catalysts, see: Mazzacano TJ. Mankad NP. J. Am. Chem. Soc. 2013; 135: 17258
- 8a Cid J. Gulyás H. Carbó JJ. Fernández E. Chem. Soc. Rev. 2012; 41: 3558
- 8b Dewhurst RD. Neeve EC. Braunschweig H. Marder TB. Chem. Commun. 2015; 51: 9594
- 8c Lee K. Zhugralin AR. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 7253 ; J. Am. Chem. Soc. 2010, 132, 12766 (additions and corrections)
- 8d Bonet A. Gulyás H. Fernández E. Angew. Chem. Int. Ed. 2010; 49: 5130
- 8e Bonet A. Pubill-Ulldemolins C. Bo C. Gulyás H. Fernández E. Angew. Chem. Int. Ed. 2011; 50: 7158
- 8f Cid J. Carbó JJ. Fernández E. Chem. Eur. J. 2012; 18: 12794
- 8g Wu H. Radomkit S. O’Brien JM. Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 8277
- 8h Bonet A. Sole C. Gulyás H. Fernández E. Org. Biomol. Chem. 2012; 10: 6621
- 8i Wen K. Chen J. Gao F. Bhadury PS. Fan E. Sun Z. Org Biomol. Chem. 2013; 11: 6350
- 8j Blaisdell TP. Caya TC. Zhang L. Sanz-Marco A. Morken JP. J. Am. Chem. Soc. 2014; 136: 9264
- 8k Cid J. Carbó JJ. Fernández E. Chem. Eur. J. 2014; 20: 3616
- 8l La Cascia E. Sanz X. Bo C. Whiting A. Fernández E. Org. Biomol. Chem. 2015; 13: 1328
- 8m Miralles N. Cid J. Cuenca AB. Carbo JJ. Fernández E. Chem. Commun. 2015; 51: 1693
- 8n Cade IA. Chau WY. Ingleson MJ. Dalton Trans. 2015; 44: 7506
- 8o Pietsch S. Neeve EC. Apperley DC. Bertermann R. Mo F. Qiu D. Cheung MS. Dang L. Wang J. Radius U. Lin Z. Kleeberg C. Marder TB. Chem. Eur. J. 2015; 21: 7082
- 8p Miralles N. Alam R. Szabó KJ. Fernández E. Angew. Chem. Int. Ed. 2016; 55: 4303
- 8q Fang L. Yan L. Haeffner F. Morken JP. J. Am. Chem. Soc. 2016; 138: 2508
- 8r Harada K. Nogami M. Hirano K. Kurauchi D. Kato H. Miyamoto K. Saito T. Uchiyama M. Org. Chem. Front. 2016; 3: 565
- 9a Dewar MJ. S. Kubba VP. Pettit R. J. Chem. Soc. 1958; 3073
- 9b Muetterties EL. J. Am. Chem. Soc. 1960; 82: 4163
- 9c Muetterties EL. Tebbe FN. Inorg. Chem. 1968; 7: 2663
- 9d Davis FA. Dewar MJ. S. J. Am. Chem. Soc. 1968; 90: 3511
- 9e Genaev AM. Nagy SM. Salnikov GE. Shubin VG. Chem. Commun. 2000; 1587
- 9f Del Grosso A. Pritchard RG. Muryn CA. Ingleson MJ. Organometallics 2010; 29: 241
- 9g Del Grosso A. Singleton PJ. Muryn CA. Ingleson MJ. Angew. Chem. Int. Ed. 2011; 50: 2102
- 9h Niu L. Yang H. Wang R. Fu H. Org. Lett. 2012; 14: 2618
- 9i Warner AJ. Lawson JR. Fasano V. Ingleson MJ. Angew. Chem. Int. Ed. 2015; 54: 11245
- 9j Faizi DJ. Davis AJ. Meany FB. Blum SA. Angew. Chem. Int. Ed. 2016; 55: 14286
- 10a Mo F. Jiang Y. Qiu D. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2010; 49: 1846
- 10b Zhu C. Yamane M. Org. Lett. 2012; 14: 4560
- 10c Chen K. Cheung MS. Lin Z. Li P. Org. Chem. Front. 2016; 3: 875
- 10d Chen K. Zhang S. He P. Li P. Chem. Sci. 2016; 7: 3676
- 10e Mfuh AM. Nguyen VT. Chhetri B. Burch JE. Doyle JD. Nesterov VN. Arman HD. Larionov OV. J. Am. Chem. Soc. 2016; 138: 8408
- 10f Mfuh AM. Doyle JD. Chhetri B. Arman HD. Larionov OV. J. Am. Chem. Soc. 2016; 138: 2985
- 11a Yamamoto E. Izumi K. Horita Y. Ito H. J. Am. Chem. Soc. 2012; 134: 19997
- 11b Yamamoto E. Ukigai S. Ito H. Chem. Sci. 2015; 6: 2943
- 11c Uematsu R. Yamamoto E. Maeda S. Ito H. Taketsugu T. J. Am. Chem. Soc. 2015; 137: 4090
- 11d Yamamoto E. Izumi K. Shishido R. Seki T. Tokodai N. Ito H. Chem. Eur. J. 2016; 22: 17547
- 11e Yamamoto E. Izumi K. Horita Y. Ukigai S. Ito H. Top. Catal. 2014; 57: 940
- 12a Kawachi A. Minamimoto T. Tamao K. Chem. Lett. 2001; 1216
- 12b Hata T. Kitagawa H. Masai H. Kurahashi T. Shimizu M. Hiyama T. Angew. Chem. Int. Ed. 2001; 40: 790
- 12c O’Brien JM. Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7712
- 12d Ito H. Horita Y. Yamamoto E. Chem. Commun. 2012; 48: 8006
- 12e Oshima K. Ohmura T. Suginome M. Chem. Commun. 2012; 48: 8571
- 12f Kleeberg C. Borner C. Eur. J. Inorg. Chem. 2013; 2799
- 12g Shintani R. Fujie R. Takeda M. Nozaki K. Angew. Chem. Int. Ed. 2014; 53: 6546
- 12h Nagao K. Ohmiya H. Sawamura M. Org. Lett. 2015; 17: 1304
- 12i Wu H. Garcia JM. Haeffner F. Radomkit S. Zhugralin AR. Hoveyda AH. J. Am. Chem. Soc. 2015; 137: 10585
- 12j Oestreich M. Hartmann E. Mewald M. Chem. Rev. 2013; 113: 402
- 12k Cuenca AB. Shishido R. Ito H. Fernández E. Chem. Soc. Rev. 2017; 46: 415
- 13a Yamashita M. Bull. Chem. Soc. Jpn. 2011; 84: 983
- 13b Segawa Y. Yamashita M. Nozaki K. Science 2006; 314: 113
- 14a Wittig G. Schöllkopf U. Tetrahedron 1958; 3: 91
- 14b Sunthankar SV. Gilman H. J. Org. Chem. 1951; 16: 8
- 14c Artamkina GA. Sazonov PK. Ivushkin VA. Beletskaya IP. Chem. Eur. J. 1998; 4: 1169
- 14d Mori M. Kaneta N. Isono N. Shibasaki M. Tetrahedron Lett. 1991; 32: 6139
- 14e Ivushkin VA. Sazonov PK. Artamkina GA. Beletskaya IP. J. Organomet. Chem. 2000; 597: 77
- 14f For a review of halogenophilic reactions, see: Zefirov NS. Makhon’kov DI. Chem. Rev. 1982; 82: 615
- 15a Segawa Y. Suzuki Y. Yamashita M. Nozaki K. J. Am. Chem. Soc. 2008; 130: 16069
- 15b Cheung MS. Marder TB. Lin Z. Organometallics 2011; 30: 3018
- 16 Däschlein C. Bauer SO. Strohmann C. Eur. J. Inorg. Chem. 2011; 1454
- 17a Ohmura T. Suginome M. Bull. Chem. Soc. Jpn. 2009; 82: 29
- 17b Burks HE. Morken JP. Chem. Commun. 2007; 4717
- 18 Hall DG. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials . Hall DG. Wiley-VCH; Weinheim: 2011. 2nd ed., Vol. 1 45
- 19 Brown HC. Imai T. Organometallics 1984; 3: 1392
- 20a Leadbeater NE. Nat. Chem. 2010; 2: 1007
- 20b Thomé I. Nijs A. Bolm C. Chem. Soc. Rev. 2012; 41: 979
- 21 Abeywickrema AN. Beckwith AL. J. J. Chem. Soc., Chem. Commun. 1986; 464
- 22a Jenkins PR. Symons MC. R. Booth SE. Swain CJ. Tetrahedron Lett. 1992; 33: 3543
- 22b Galli C. Guarnieri A. Koch H. Mencarelli P. Rappoport Z. J. Org. Chem. 1997; 62: 4072
- 23a Shirakawa E. Hayashi Y. Itoh K. Watabe R. Uchiyama N. Konagaya W. Masui S. Hayashi T. Angew. Chem. Int. Ed. 2012; 51: 218
- 23b Haines BE. Wiest O. J. Org. Chem. 2014; 79: 2771
- 23c Chan TL. Wu Y. Choy PY. Kwong FY. Chem. Eur. J. 2013; 19: 15802
- 23d Studer A. Curran DP. Nat. Chem. 2014; 6: 765
- 24a Sameera WM. C. Maeda S. Morokuma K. Acc. Chem. Res. 2016; 49: 763 For technical details, see:
- 24b Maeda S. Morokuma K. J. Chem. Phys. 2010; 132: 241102
- 24c Maeda S. Ohno K. Morokuma K. Phys. Chem. Chem. Phys. 2013; 15: 3683
- 24e Maeda S. Harabuchi Y. Takagi M. Taketsugu T. Morokuma K. Chem. Rec. 2016; 16: 2232
- 25a Doty JC. Babb B. Grisdale PJ. Glogowski M. Williams JL. R. J. Organomet. Chem. 1972; 38: 229
- 25b Kaim W. Schulz A. Angew. Chem., Int. Ed. Engl. 1984; 23: 615
- 25c Yuan Z. Taylor NJ. Marder TB. Williams ID. Kurtz SK. Cheng L.-T. J. Chem. Soc., Chem. Commun. 1990; 1489
- 25d Entwistle CD. Marder TB. Angew. Chem. Int. Ed. 2002; 41: 2927
- 25e Entwistle CD. Marder TB. Chem. Mater. 2004; 16: 4574
- 25f Jia W.-L. Song D. Wang S. J. Org. Chem. 2003; 68: 701
- 25g Zhao C.-H. Wakamiya A. Inukai Y. Yamaguchi S. J. Am. Chem. Soc. 2006; 128: 15934
- 25h Cheng F. Jäkle F. Chem. Commun. 2010; 46: 3717
- 25i Weber L. Eickhoff D. Marder TB. Fox MA. Low PJ. Dwyer AD. Tozer DJ. Schwedler S. Brockhinke A. Stammler H.-G. Neumann B. Chem. Eur. J. 2012; 18: 1369
- 25j Liu Z.-Q. Fang Q. Wang D. Xue G. Yu W.-T. Shao Z.-S. Jiang M.-H. Chem. Commun. 2002; 2900
- 25k Liu Z.-Q. Fang Q. Wang D. Cao D.-X. Xue G. Yu W.-T. Lei H. Chem. Eur. J. 2003; 9: 5074
- 25l Liu Z.-Q. Fang Q. Cao D.-X. Wang D. Xu G.-B. Org. Lett. 2004; 6: 2933
- 25m Charlot M. Porrès L. Entwistle CD. Beeby A. Marder TB. Blanchard-Desce M. Phys. Chem. Chem. Phys. 2005; 7: 600
- 25n Yamaguchi S. Akiyama S. Tamao K. J. Am. Chem. Soc. 2001; 123: 11372
- 25o Miyata M. Chujo Y. Polym. J. 2002; 34: 967
- 25p Noda T. Shirota Y. J. Am. Chem. Soc. 1998; 120: 9714
- 25q Yamaguchi S. Akiyama S. Tamao K. J. Am. Chem. Soc. 2000; 122: 6335
- 25r Yuan Z. Taylor N. Sun JY. Mader TB. Williams ID. Cheng L.-T. J. Organomet. Chem. 1993; 449: 27
- 25s Yuan Z. Taylor NJ. Ramachandran R. Marder TB. Appl. Organomet. Chem. 1996; 10: 305
- 25t Yuan Z. Entwistle CD. Collings JC. Albesa-Jové D. Batsanov AS. Howard JA. K. Taylor NJ. Kaiser HM. Kaufmann DE. Poon SY. Wong WY. Jardin C. Fathallah S. Boucekkine A. Halet JF. Marder TB. Chem. Eur. J. 2006; 12: 2758
See refs. 2b, 2c and the following references:
Transition-metal-catalyzed borylations of aryl halides have been reported. For selected examples of Pd-catalyzed reactions, see:
For Ni catalyzed reactions, see:
For a review of transition-metal-catalyzed C(sp2)-H borylations, see:
For pioneering works, see:
For reviews see:
Base-metal-catalyzed borylation reactions have emerged as environmentally benign alternatives to conventional transition-metal-catalyzed borylations because base metals are less toxic and are relatively inexpensive. For Zn-catalyzed reactions, see:
For reviews, see:
For borylation reactions via Lewis base activation of diboron reagents, see:
For electrophilic borylations, see:
For radical-mediated borylations, see:
For reviews, see:
For related halogenophilic reactions, see:
For related halogenophilic reactions with boryl nucleophiles, a few examples have been reported. See, ref 7c and the following references:
For reviews of reactions with silylboranes, see:
For reviews on trace-transition-metal catalysis, see:
For reviews, see:
For a review on the application of AFIR in organic reactions, see:
For pioneering works, see:
For reviews, see:
For selected examples of emissive materials, see:
For selected examples of two-photon absorption materials, see:
For selected examples of ion sensors, see:
For selected examples of electron-transporting materials, see:
For selected examples of nonlinear optical materials, see: